The dependence of the subduction regime on three-dimensional slab geometry poses a challenge for accurately estimating the evolving thermal structure of megathrusts globally. Although slab dips and ages have gained at...The dependence of the subduction regime on three-dimensional slab geometry poses a challenge for accurately estimating the evolving thermal structure of megathrusts globally. Although slab dips and ages have gained attention, the specific impacts of oblique subduction remain unmeasured. Here, we present an integrated thermal model that quantifies how slab morphology can shape the thermal state of megathrusts, such as those in the Makran Subduction Zone. The model considers both slab obliquity and depth variations along the trench. We find a considerable match between the slab petrological dehydration zone and the distribution of great crustal earthquakes. We suggest that the accumulation of fluids along megathrusts by slab metamorphism can foster more polarized conditions for decreasing plate coupling and increasing interplate ruptures. It is thus imperative to improve model representation and more realistically represent how drivers of slab geometry affect metamorphic transitions and the occurrence of earthquakes at megathrusts.展开更多
Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurr...Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.展开更多
Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemic...Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.展开更多
Southern corn rust(SCR),caused by the fungal pathogen Puccinia polysora,is a major threat to maize pro-duction worldwide.Efficient breeding and deployment of resistant hybrids are key to achieving durable control of S...Southern corn rust(SCR),caused by the fungal pathogen Puccinia polysora,is a major threat to maize pro-duction worldwide.Efficient breeding and deployment of resistant hybrids are key to achieving durable control of SCR.Here,we report the molecular cloning and characterization of RppC,which encodes an NLR-type immune receptor and is responsible for a major SCR resistance quantitative trait locus.Further-more,we identified the corresponding avirulence effector,AvrRppC,which is secreted by P.polysora and triggers RppC-mediated resistance.Allelic variation of AvrRppC directly determines the effectiveness of RppC-mediated resistance,indicating that monitoring of AvrRppC variants in the field can guide the rational deployment of RppC-containing hybrids in maize production.Currently,RppC is the most frequently deployed SCR resistance gene in China,and a better understanding of its mode of action is crit-ical for extending its durability.展开更多
基金benefited from the financial support of the Chinese Academy of Sciences Pioneer Hundred Talents Programthe Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0708)+2 种基金the MEXT KAKENHI grant (Grant No. 21H05203)the Kobe University Strategic International Collaborative Research Grant (Type B Fostering Joint Research)the “Science of Slowto-Fast Earthquakes” project。
文摘The dependence of the subduction regime on three-dimensional slab geometry poses a challenge for accurately estimating the evolving thermal structure of megathrusts globally. Although slab dips and ages have gained attention, the specific impacts of oblique subduction remain unmeasured. Here, we present an integrated thermal model that quantifies how slab morphology can shape the thermal state of megathrusts, such as those in the Makran Subduction Zone. The model considers both slab obliquity and depth variations along the trench. We find a considerable match between the slab petrological dehydration zone and the distribution of great crustal earthquakes. We suggest that the accumulation of fluids along megathrusts by slab metamorphism can foster more polarized conditions for decreasing plate coupling and increasing interplate ruptures. It is thus imperative to improve model representation and more realistically represent how drivers of slab geometry affect metamorphic transitions and the occurrence of earthquakes at megathrusts.
基金benefited from the financial support of the CAS Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708)。
文摘Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.
文摘Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.
基金supported by grants from the National Key Research and Development Program of China(2021YFF1000302)the National Natural Science Foundation of China(31901550)+2 种基金the Ministry of Science and Technology of China(2016YFD0101803)the National Natural Science Foundation of China(31501326)Innovative Talents in Colleges and Universities of Henan Province(19HASTIT010)was a funding pro-vided by Henan Province government of China.
文摘Southern corn rust(SCR),caused by the fungal pathogen Puccinia polysora,is a major threat to maize pro-duction worldwide.Efficient breeding and deployment of resistant hybrids are key to achieving durable control of SCR.Here,we report the molecular cloning and characterization of RppC,which encodes an NLR-type immune receptor and is responsible for a major SCR resistance quantitative trait locus.Further-more,we identified the corresponding avirulence effector,AvrRppC,which is secreted by P.polysora and triggers RppC-mediated resistance.Allelic variation of AvrRppC directly determines the effectiveness of RppC-mediated resistance,indicating that monitoring of AvrRppC variants in the field can guide the rational deployment of RppC-containing hybrids in maize production.Currently,RppC is the most frequently deployed SCR resistance gene in China,and a better understanding of its mode of action is crit-ical for extending its durability.