Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,part...Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,particularly those made from conventional steel or titanium alloys.In this study,a biodegradable Zn-0.45Mn-0.2Mg(ZMM42)alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion.The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time.After 35 d of immersion in simulated body fluids,the ZMM42 alloy fixation buttons were degraded at a rate of 44μm/a,and the fixation strength was retained(379.55 N)in the traction loops.Simultaneously,the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus.These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.展开更多
Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow cha...Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.展开更多
This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biologica...This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biological reactivity.Employing an operando investigation system that synergizes microfluidic technology with advanced micro-visualization techniques within a lab-on-a-chip framework enables a meticulous examination of the dynamic deposition phenomena.The incorporation of object detection and deep learning methodologies in image processing streamlines the automatic identification and swift extraction of crucial data,effectively tackling the complexities associated with capturing and mitigating these hazardous particles.Combined with the analysis of the growth behavior of particle chain under different applied voltages,it established that a linear relationship exists between the applied voltage and θ.And there is a negative correlation between the average particle chain length and electric field strength at the collection electrode surface(4.2×10^(5)to 1.6×10^(6)V·m^(-1)).The morphology of the deposited particle agglomerate at different electric field strengths is proposed:dendritic agglomerate,long chain agglomerate,and short chain agglomerate.展开更多
Nuclear energy is a vital source of clean energy that will continue to play an essential role in global energy production for future generations.Nuclear fuel rods are core components of nuclear power plants,and their ...Nuclear energy is a vital source of clean energy that will continue to play an essential role in global energy production for future generations.Nuclear fuel rods are core components of nuclear power plants,and their safe utilization is paramount.Due to its inherent high radioactivity,indirect neutron radiography(INR)is currently the only viable technology for irradiated nuclear fuel rods in the field of energy production.This study explores the experimental technique of indirect neutron computed tomography(INCT)for radioactive samples.This project includes the development of indium and dysprosium conversion screens of different thicknesses and conducts resolution tests to assess their performance.Moreover,pressurized water reactor(PWR)dummy nuclear fuel rods have been fabricated by self-developing substitute materials for cores and outsourcing of mechanical processing.Experimental research on the INR is performed using the developed dummy nuclear fuel rods.The sparse reconstruction technique is used to reconstruct the INR results of 120 pairs of dummy nuclear fuel rods at different angles,achieving a resolution of 0.8 mm for defect detection using INCT.展开更多
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives...Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging.展开更多
The estimation of non-point source pollution loads into the Danjiangkou Reservoir is highly significant to environmental protection in the watershed. In order to overcome the drawbacks of traditional watershed numeric...The estimation of non-point source pollution loads into the Danjiangkou Reservoir is highly significant to environmental protection in the watershed. In order to overcome the drawbacks of traditional watershed numerical models, a base flow separation method was established coupled with a digital filtering method and a flux method. The digital filtering method has been used to separate the base flows of the Hanjiang,Tianhe, Duhe, Danjiang, Laoguan, and Qihe rivers. Based on daily discharge, base flow, and pollutant concentration data, the flux method was used to calculate the point source pollution load and non-point source pollution load. The results show that:(1) In the year 2013, the total inflow of the six rivers mentioned above accounted for 95.9% of the total inflow to the Danjiangkou Reservoir. The total pollution loads of chemical oxygen demand(CODMn) and total phosphorus(TP) from the six rivers were 58.20 103 t and 1.863 10~3 t, respectively, and the non-point source pollution loads were 39.82 10~3 t and 1.544 10~3 t, respectively, indicating that the non-point source pollution is a major factor(with a contribution rate of 68.4% for CODMnand 82.9% for TP).(2) The Hanjiang River is the most significant contributor of pollution loads to the Danjiangkou Reservoir, and its CODMnand TP contribution rates reached 79.3% and 83.2%, respectively. The Duhe River took the second place.(3) Non-point source pollution mainly occurred in the wet season in 2013, accounting for 80.8% and 90.9% of the total pollution loads of CODMnand TP, respectively. It is concluded that the emphasis of pollution control should be placed on non-point source pollution.展开更多
目的:探讨“针药并举”治疗脑卒中后肩手综合征(Shoulder Hand Syndrome After Stroke,SHSAS)患者的疗效及对血液流变学指标及预后的影响。方法:选取2016年5月至2018年5月钦州市第一人民医院收治的SHSAS患者102例作为研究对象,按照随机...目的:探讨“针药并举”治疗脑卒中后肩手综合征(Shoulder Hand Syndrome After Stroke,SHSAS)患者的疗效及对血液流变学指标及预后的影响。方法:选取2016年5月至2018年5月钦州市第一人民医院收治的SHSAS患者102例作为研究对象,按照随机数字表法分为对照组(n=49)和观察组(n=53)。对照组给予常规神经内科用药治疗,观察组在对照组基础上给予针药结合治疗,均治疗14 d;比较2组临床疗效,治疗前后FMA、NRS评分、肿胀评分和血液流变学指标观察,随访末期(治疗后6个月)SHSS、生命质量及治疗期间不良反应发生情况。结果:2组临床治疗效果差异有统计学意义(P<0.05),观察组总有效率(92.45%)显著高于对照组(77.55%)(P<0.05)。治疗后,2组FMA评分均较治疗前提高,NRS和肿胀评分均较治疗前降低(P<0.05),且观察组FMA评分(54.17±7.12)分,显著高于对照组的(49.95±9.64)分,NRS和肿胀评分为(2.57±0.85)分和(2.95±0.96)分、显著低于对照组的(0.82±0.27)分和(1.19±0.39)分(P<0.05);2组血浆黏度、全血高切黏度、全血低切黏度和血小板聚集率较治疗前均有所降低,但观察组上述指标均显著低于对照组(P<0.05);随访末期观察组SHSS评分明显低于对照组,生命质量各项评分均明显高于对照组(P<0.05);观察组和对照组不良反应发生率为11.32%和8.16%,差异无统计学意义(P>0.05)。结论:“针药并举”治疗SHSAS患者具有良好的近、远期临床疗效,可以明显减轻患者症状,有效改善血液流变学指标并提高患者的生命质量。展开更多
基金financially supported by the Xiongan New Area Science and Technology Innovation Project,China(No.2022XACX0600)the Beijing Nova Program Cross Cooperation Program,China(No.20220484178)。
文摘Anterior cruciate ligament(ACL)injuries of the knee are one of the most common and serious athletic injuries.The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants,particularly those made from conventional steel or titanium alloys.In this study,a biodegradable Zn-0.45Mn-0.2Mg(ZMM42)alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion.The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time.After 35 d of immersion in simulated body fluids,the ZMM42 alloy fixation buttons were degraded at a rate of 44μm/a,and the fixation strength was retained(379.55 N)in the traction loops.Simultaneously,the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus.These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.
基金the financial support from the Shanghai Sailing Program,China(21YF1409500)the National Natural Science Foundation of China(22308100,22308105)+1 种基金the State Key Laboratory of Chemical Engineering(SKL-ChE-23Z01)the National Science Fund for Distinguished Young Scholars of China(22225804).
文摘Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.
基金supported by the National Natural Science Foundation of China(52200130,22308100).
文摘This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biological reactivity.Employing an operando investigation system that synergizes microfluidic technology with advanced micro-visualization techniques within a lab-on-a-chip framework enables a meticulous examination of the dynamic deposition phenomena.The incorporation of object detection and deep learning methodologies in image processing streamlines the automatic identification and swift extraction of crucial data,effectively tackling the complexities associated with capturing and mitigating these hazardous particles.Combined with the analysis of the growth behavior of particle chain under different applied voltages,it established that a linear relationship exists between the applied voltage and θ.And there is a negative correlation between the average particle chain length and electric field strength at the collection electrode surface(4.2×10^(5)to 1.6×10^(6)V·m^(-1)).The morphology of the deposited particle agglomerate at different electric field strengths is proposed:dendritic agglomerate,long chain agglomerate,and short chain agglomerate.
基金supported in part by the National Key R&D Program of China (No. 2022YFA1604002)the Sichuan Postdoctoral Research Program (No. TB2022035)+1 种基金the Nuclear Energy Development Research Program of Chinathe Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering (No. SUSE652A001)
文摘Nuclear energy is a vital source of clean energy that will continue to play an essential role in global energy production for future generations.Nuclear fuel rods are core components of nuclear power plants,and their safe utilization is paramount.Due to its inherent high radioactivity,indirect neutron radiography(INR)is currently the only viable technology for irradiated nuclear fuel rods in the field of energy production.This study explores the experimental technique of indirect neutron computed tomography(INCT)for radioactive samples.This project includes the development of indium and dysprosium conversion screens of different thicknesses and conducts resolution tests to assess their performance.Moreover,pressurized water reactor(PWR)dummy nuclear fuel rods have been fabricated by self-developing substitute materials for cores and outsourcing of mechanical processing.Experimental research on the INR is performed using the developed dummy nuclear fuel rods.The sparse reconstruction technique is used to reconstruct the INR results of 120 pairs of dummy nuclear fuel rods at different angles,achieving a resolution of 0.8 mm for defect detection using INCT.
基金funded by National Key Research and Development Program of China (2022YFB2804603,2022YFB2804604)National Natural Science Foundation of China (62075096,62205147,U21B2033)+7 种基金China Postdoctoral Science Foundation (2023T160318,2022M711630,2022M721619)Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB254)The Leading Technology of Jiangsu Basic Research Plan (BK20192003)The“333 Engineering”Research Project of Jiangsu Province (BRA2016407)The Jiangsu Provincial“One belt and one road”innovation cooperation project (BZ2020007)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense (JSGP202105)Fundamental Research Funds for the Central Universities (30922010405,30921011208,30920032101,30919011222)National Major Scientific Instrument Development Project (62227818).
文摘Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0402204 and 2016YFC0402207)
文摘The estimation of non-point source pollution loads into the Danjiangkou Reservoir is highly significant to environmental protection in the watershed. In order to overcome the drawbacks of traditional watershed numerical models, a base flow separation method was established coupled with a digital filtering method and a flux method. The digital filtering method has been used to separate the base flows of the Hanjiang,Tianhe, Duhe, Danjiang, Laoguan, and Qihe rivers. Based on daily discharge, base flow, and pollutant concentration data, the flux method was used to calculate the point source pollution load and non-point source pollution load. The results show that:(1) In the year 2013, the total inflow of the six rivers mentioned above accounted for 95.9% of the total inflow to the Danjiangkou Reservoir. The total pollution loads of chemical oxygen demand(CODMn) and total phosphorus(TP) from the six rivers were 58.20 103 t and 1.863 10~3 t, respectively, and the non-point source pollution loads were 39.82 10~3 t and 1.544 10~3 t, respectively, indicating that the non-point source pollution is a major factor(with a contribution rate of 68.4% for CODMnand 82.9% for TP).(2) The Hanjiang River is the most significant contributor of pollution loads to the Danjiangkou Reservoir, and its CODMnand TP contribution rates reached 79.3% and 83.2%, respectively. The Duhe River took the second place.(3) Non-point source pollution mainly occurred in the wet season in 2013, accounting for 80.8% and 90.9% of the total pollution loads of CODMnand TP, respectively. It is concluded that the emphasis of pollution control should be placed on non-point source pollution.
文摘目的:探讨“针药并举”治疗脑卒中后肩手综合征(Shoulder Hand Syndrome After Stroke,SHSAS)患者的疗效及对血液流变学指标及预后的影响。方法:选取2016年5月至2018年5月钦州市第一人民医院收治的SHSAS患者102例作为研究对象,按照随机数字表法分为对照组(n=49)和观察组(n=53)。对照组给予常规神经内科用药治疗,观察组在对照组基础上给予针药结合治疗,均治疗14 d;比较2组临床疗效,治疗前后FMA、NRS评分、肿胀评分和血液流变学指标观察,随访末期(治疗后6个月)SHSS、生命质量及治疗期间不良反应发生情况。结果:2组临床治疗效果差异有统计学意义(P<0.05),观察组总有效率(92.45%)显著高于对照组(77.55%)(P<0.05)。治疗后,2组FMA评分均较治疗前提高,NRS和肿胀评分均较治疗前降低(P<0.05),且观察组FMA评分(54.17±7.12)分,显著高于对照组的(49.95±9.64)分,NRS和肿胀评分为(2.57±0.85)分和(2.95±0.96)分、显著低于对照组的(0.82±0.27)分和(1.19±0.39)分(P<0.05);2组血浆黏度、全血高切黏度、全血低切黏度和血小板聚集率较治疗前均有所降低,但观察组上述指标均显著低于对照组(P<0.05);随访末期观察组SHSS评分明显低于对照组,生命质量各项评分均明显高于对照组(P<0.05);观察组和对照组不良反应发生率为11.32%和8.16%,差异无统计学意义(P>0.05)。结论:“针药并举”治疗SHSAS患者具有良好的近、远期临床疗效,可以明显减轻患者症状,有效改善血液流变学指标并提高患者的生命质量。
文摘深静脉血栓(deep venous thrombosis,DVT)是院内非预期死亡的重要因素之一,长期卧床者是DVT的高危人群。本研究基于JBI循证保健中心现有的最佳证据,制定了14条审查指标。对长期卧床老年患者应用基于循证的DVT预防管理实践,可提高证据应用的依从性,降低DVT发生率,改善生活质量。与基线审查结果比较,证据应用后患者的DVT发生率显著减少,高敏C反应蛋白(high sensitivity C reactive protein,hsCRP)含量显著下降,预防DVT气泵使用显著增多( P <0.05),临床护士的规范护理实践显著改善。