MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that trans...Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.展开更多
Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focus...Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focuses in SACs.However,the in-depth understanding of the role that the coordination atoms of single atom play in the catalytic process is lacking.Herein,we proposed a graphene-like boroncarbon-nitride(BCN) monolayer as the support of single metal atom.The electrocatalytic nitrogen reduction reaction(eNRR) performances of 3 d,4 d transition metal(TM) atoms embedded in defective BCN were systematically investigated by means of density functional theory(DFT) computations.Our study shows that the TM-to-N and B-to-N π-back bonding can contribute to the activation of N_(2).Importantly,a combined effect is revealed between single TM atom and boron atom on eNRR:TM atom enhances the nitrogen reduction process especially in facilitating the N_(2) adsorption and the NH3 desorption,while boron atom modulates the bonding strength of key intermediates by balancing the charged species.Furthermore,Nb@BN3 possesses the highest electrocata lytic activity with limiting potential of-0.49 V,and exhibits a high selectivity for nitrogen reduction reaction(NRR) to ammonia compared with hydrogen evolution reaction(HER).As such,this work can stimulate a research doorway for designing multi-active sites of the anchored single atoms and the innate atoms of substrate based on the mechanistic insights to guide future eNRR research.展开更多
太阳能驱动水裂解产氢是一种绿色能源技术,用于制备可再生和零碳排放燃料以实现可持续能源生产.近期,氮化碳(g-C_(3)N_(4))同素异形体C_(3)N_(5)的出现克服了g-C_(3)N_(4)的固有缺点,如光生载流子快速复合和可见光吸收差,而导致极低的...太阳能驱动水裂解产氢是一种绿色能源技术,用于制备可再生和零碳排放燃料以实现可持续能源生产.近期,氮化碳(g-C_(3)N_(4))同素异形体C_(3)N_(5)的出现克服了g-C_(3)N_(4)的固有缺点,如光生载流子快速复合和可见光吸收差,而导致极低的光催化效率.本文将硼掺杂剂通过原子替换或间隙掺杂的方式引入到C_(3)N_(5)体系中,并利用密度泛函理论对纯C_(3)N_(5)和硼掺杂C_(3)N_(5)体系进行计算,考察了硼原子对C_(3)N_(5)电子和光学性能的影响以及其催化析氢反应(HER)机理.热力学计算结果表明,硼原子掺杂在C_(3)N_(5)体系中是可行且有利的.在N_(3)位氮原子被硼原子取代(BN_(3)-C_(3)N_(5))后,带隙(0.6 e V)变窄.与纯C_(3)N_(5)相比,硼掺杂剂通过Volmer Tafel和Volmer Heyrovsky机制降低了酸性和碱性介质中HER反应中决定步骤的反应能垒.BN_(3)-C_(3)N_(5)表面的氢吸附吉布斯自由能(0.11 e V)与Pt/C催化剂(-0.09 e V)相当.综上,非金属掺杂碳可提高氮化物的催化性能,对未来该方向研究提供一定借鉴.展开更多
Two-dimensional(2D)materials have come to light due to their unique thickness that owns abundant exposed edges with enhanced electrocatalytic properties.2D molybdenum disulfide(MoS_(2))nanosheet has aroused considerab...Two-dimensional(2D)materials have come to light due to their unique thickness that owns abundant exposed edges with enhanced electrocatalytic properties.2D molybdenum disulfide(MoS_(2))nanosheet has aroused considerable attention due to its tunable surface chemistry and high electrochemical sur-face area.Nonetheless,several shortcomings associated with MoS_(2),such as its naturally existing semi-conducting 2H phase,which has limited active sites due to the inert basal plane,restrict its application in water electrocatalysis.Taking into account the benefits of the 1T/2H phase of MoS_(2),as well as the importance of engineering 2D/2D heterojunction interface for boosted electrocatalysis,metallic Ti_(3)C_(2)Tx was integrated with 1T/2H MoS_(2) to develop 2D/2D 1T/2H MoS_(2)/Ti_(3)C_(2)Tx heterostructured nanocompos-ites.Herein,with only 25%of the intercalating agent,1T/2H MoS_(2) with the highest 1T phase content of~82%was successfully synthesized.It was further incorporated with 1 wt%of Ti_(3)C_(2)Tx through a com-bination of ultrasonication and mechanical stirring process.The 1T/2H MoS_(2)(25D)/Ti_(3)C_(2)Tx-1(MTC-1)manifested outstanding electrocatalytic performance with an overpotential and Tafel slope of 280 mV(83.80 mV dec^(-1))and 300 mV(117.2 mV dec^(-1)),for catalyzing acidic and alkaline medium HER,respec-tively.Pivotally,the as-prepared catalysts also illustrated long-term stability for more than 40 h.The coupling method for the 2D nanosheets is crucial to suppress the oxidation of Ti_(3)C_(2)Tx and the restack-ing issue of 2D nanosheets.The superior HER activity is ascribed to the synergistic effect between the heterostructure,enhancing the electronic structure and charge separation capability.The intrinsic prop-erty of the catalyst further confirms by turnover frequency(TOF)calculation.As such,this research paves the way for designing high-efficiency 2D electrocatalysts and sheds light on the further advancement of tunable 2D electrocatalysts for robust water splitting and beyond.展开更多
IntegratingH_(2)O_(2)evolution with oxidative organic synthesis in a semiconductordriven photoredox reaction is highly attractive since H_(2)O_(2)and high-value chemicals can be concurrently produced using solar light...IntegratingH_(2)O_(2)evolution with oxidative organic synthesis in a semiconductordriven photoredox reaction is highly attractive since H_(2)O_(2)and high-value chemicals can be concurrently produced using solar light as the only energy input.The dual-functional photocatalytic approach,free from sacrificial agents,enables simultaneous production of H_(2)O_(2)and high-value organic chemicals.This strategy promises a green and sustainable organic synthesis with minimal greenhouse gas emissions.In this review,we first elucidate the fundamental principles of cooperative photoredox integration of H_(2)O_(2)synthesis and selective organic oxidation with simultaneous utilization of photoexcited electrons and holes over semiconductor-based photocatalysts.Afterwards,a thorough review on the recent advancements of cooperative photoredox synthesis of H_(2)O_(2)and value-added chemicals is presented.Notably,in-depth discussions and insights into the techniques for unravelling the photoredox reaction mechanisms are elucidated.Finally,critical challenges and prospects in this thriving field are comprehensively discussed.It is envisioned that this review will serve as a pivotal guidance on the rational design of such dual-functional photocatalytic system,thereby further stimulating the development of economical and environmentally benignH_(2)O_(2)and high-value chemicals production.展开更多
To date,extensively high demand for hydrogen peroxide(H_(2)O_(2))has been predominantly supplied by the anthraquinone process for several worldwide applications,encompassing wastewater treatment,environmental remediat...To date,extensively high demand for hydrogen peroxide(H_(2)O_(2))has been predominantly supplied by the anthraquinone process for several worldwide applications,encompassing wastewater treatment,environmental remediation,and chemical synthesis.However,the compacted manufacturing,massive energy input and the release of tremendous wastes have restricted commercialization feasibility.Regards to mitigate such issues,the photocatalytic H_(2)O_(2)production by utilizing g-C_(3)N_(4)catalysts has endowed a greener,sustainable and promising alternative,considering that it involves water and oxygen as reactants in the present of sunlight as energy input.Herein,we have manifested a comprehensive overview of the research progress for g-C_(3)N_(4)-based semiconductors for photocatalytic H_(2)O_(2)generation.This review has systematically elucidated state-of-the-art development of different modifications on g-C_(3)N_(4)to unravel the fundamental mechanism of H_(2)O_(2)evolution via oxygen reduction reaction(ORR)and water oxidation reaction(WOR).In addition,the contribution made by vacancy introduction,doping,heterogenization,and co-catalyst passivation with respect to photoefficiency enhancement have been clarified.Furthermore,the current challenges and perspective of future development directions on photocatalytic H_(2)O_(2)production have also been highlighted.As such,g-C_(3)N_(4)stands as the next step toward advancement in the configuration and modulation of high-efficiency photocatalysts.展开更多
Hydrogen economy based on electrochemical water splitting exemplified one of the most promising means for overcoming the rapid consumption of fossil fuels and the serious deterioration of global climate.The developmen...Hydrogen economy based on electrochemical water splitting exemplified one of the most promising means for overcoming the rapid consumption of fossil fuels and the serious deterioration of global climate.The development of earth-abundant,efficient,and durable electrocatalysts for hydrogen evolution reaction(HER)plays a vital role in the commercialization of water electrolysis.Regard,the self-supported electrode with unique nitrogen-doped reduced graphene oxide(N-rGO)nanoflakes and WS_(2) hierarchical nanoflower that were grown directly on carbon cloth(CC)substrate(WS_(2)/N-rGO/CC)was successfully synthesized using a facile dual-step hydrothermal approach.The as-synthesized 50%1T/2H-WS_(2)/N-rGO/CC(WGC),which possessed high metallic 1T phase of 57%not only efficiently exposed more active sites and accelerated mass/charge diffusion,but also endowed excellent structural lustiness,robust stability,and durability at a high current density.As a result,the 50%WGC exhibited lower overpotentials and Tafel slopes of 21.13 mV(29.55 mV∙dec^(-1))and 80.35 mV(137.02 mV∙dec^(-1))as compared to 20%Pt-C/CC,respectively for catalyzing acidic and alkaline hydrogen evolution reactions.Pivotally,the as-synthesized 50%WGC also depicted long-term stability for more than 8 h in the high-current-density regions(100 and 220 mA∙cm^(-2)).In brief,this work reveals a self-supported electrode as an extraordinary alternative to Pt-based catalysts for HER in a wide pH range,while paving a facile strategy to develop advanced electrocatalysts with abundant heterointerfaces for practical applications in energy-saving hydrogen production.展开更多
Tailored synthesis of well-defined anatase TiO_(2)-based crystals with exposed{001}facets has stimulated incessant research interest worldwide due to their scientific and technological importance.Herein,anatase nitrog...Tailored synthesis of well-defined anatase TiO_(2)-based crystals with exposed{001}facets has stimulated incessant research interest worldwide due to their scientific and technological importance.Herein,anatase nitrogen-doped TiO_(2)(N-TiO_(2))nanoparticles with exposed{001}facets deposited on the graphene(GR)sheets(N-TiO_(2)-001/GR)were synthesized for the first time via a one-step solvothermal synthetic route using NH4F as the morphology-controlling agent.The experimental results exemplified that GR was uniformly covered with anatase N-TiO_(2) nanoparticles(10-17 nm),exposing the{001}facets.The percentage of exposed{001}facets in the N-TiO_(2)-001/GR nanocomposites was calculated to be ca.35%.Also,a red shift in the absorption edge and a strong absorption in the visible light range were observed due to the formation of Ti-O-C bonds,resulting in the successful narrowing of the band gap from 3.23 to 2.9 eV.The photocatalytic activities of the as-prepared photocatalysts were evaluated for CO_(2) reduction to produce CH,in the presence of water vapor under ambient temperature and atmospheric pressure using a low-power 15 W energy-saving daylight lamp as the visible light source--in contrast to the most commonly employed high-power xenon lamps--which rendered the process economically and practically feasible.Among all the studied photocatalysts,the N-TiO_(2)-001/GR nanocomposites exhibited the greatest CH4 yield of 3.70 p-mol'gcatalyst 1,approxi-mately 11-fold higher activity than the TiO_(2)-001.The enhancement of photocatalyfic performance was ascribed to the effective charge anti-recombination of graphene,high absorption of visible light region relative to the{101}facets.and high catalytic activity of{001}facets.展开更多
In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means o...In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed thehighest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. Thetotal amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 molgcatalyst-1, respectively. These values were 3.6 and 2.28 times higher, respectively, than thearn*ounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity.展开更多
The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)...The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)including grap-N,sp-N(Ⅰ)and sp-N(Ⅱ)GDY is systematically investigated as metal-free oxygen reduction electrocatalysts via density functional theory(DFT).Our results indicate that the doped nitrogen atom can significantly improve the oxygen(O2)adsorption activity of GDY through activating its neighboring carbon atoms.The free-energy landscape is employed to describe the electrochemical oxygen reduction reaction(ORR)in both O2 dissociation and association mechanisms.It is revealed that the association mechanism can provide higher ORR onset potential than dissociation mechanism on most of the substrates.Especially,sp-N(Ⅱ)GDY exhibits the highest ORR electrocatalytic activity through increasing the theoretical onset potential to 0.76 V.This work provides an atomic-level insight for the electrochemical ORR mechanism on metal-free N-doped GDY.展开更多
CO_(2)capture and conversion has been prospected as an auspicious technology to simultaneously tackle the rise in global CO_(2)emission and produce valueadded fuels with the goal of accomplishing carbon neutrality.A s...CO_(2)capture and conversion has been prospected as an auspicious technology to simultaneously tackle the rise in global CO_(2)emission and produce valueadded fuels with the goal of accomplishing carbon neutrality.A sustainable route to achieve this is via the utilization of solar energy,thereby harnessing the abundant and nonexhaustive resource to shift our reliance away from rapidly depleting fossil fuels.Graphitic carbon nitride(g-C_(3)N_(4))and its allotrope have earned its rank as a fascinating metal-free photocatalyst due to its superior stability,high surface-area-to-volume ratio,and tunable surface engineering.By leveraging these properties,robust carbon nitride-based nanostructures are engineered for photocatalytic CO_(2)conversion to energy-rich C_(1)-C_(2) product,which is indispensable in the chemical industry.Thus,this review presents the latest panorama of experimental and computational research on tuning the local electronic,surface chemical coordination environment,charge dynamics and optical properties of low-dimensional carbon nitride and its allotropes toward highly selective and efficient CO_(2)photoconversion.To name a few,structural engineering,point-defect engineering,heterojunction construction,and cocatalyst loading.To advance this frontier,critical insights are elucidated to establish the structure-performance relationship and unravel primary factors dictating the selectivity of C_(1)-C_(2) molecules from CO_(2)reduction.External-field assisted photocatalysis such as with electric(photoelectro-)and heat(photothermal)is discussed to uncover the synergistic contributions that drive the development in photochemistry.Last,future challenges and prospects are outlined for the potential application of solar-driven CO_(2)conversion,along with the scale-up strategy from the economic viewpoint toward the rational development of high-efficiency carbon nitride catalysts.展开更多
With the fast-pace digitalization evolution in the current generation’s lifestyle and the industry revolution,the energy demand has been skyrocketed.Recently,the two-dimensional(2D)bismuth-based nanomaterials emerged...With the fast-pace digitalization evolution in the current generation’s lifestyle and the industry revolution,the energy demand has been skyrocketed.Recently,the two-dimensional(2D)bismuth-based nanomaterials emerged as a promising photocatalyst candidate in solar fuel conversion,not only for its exceptional light absorption capability and tunable optical properties,but it also can be synthesized into diverse variety of nanomaterials with different ranges of potential gap and band position to fulfill the potential requirement of wide range of photocatalytic reaction.Yet,the weak light harvesting ability and ultrafast charge recombination has restricted its potential in commercial application.Thus,recent researches have been focusing on tackling these issues by incorporating some modification strategies such as heteroatom doping,vacancy engineering,facet engineering,bismuth rich strategy and heterojunction engineering.Herein,this review article presents the state-of-the-art modifications on 2D bismuth-based parent material,specifically on the relationship between each of the modification strategy on the electronic properties and surface chemistry in achieving boosted photocatalytic performance.In the view of the unique charge interaction between two semiconductors with different dimensions,we systematically discuss the rational heterostructure design from the dimensionality perspective,namely,point-to-face,line-to-face,face-to-face,and bulk-to-face in solar fuel conversion to provide inspiring insights for future interface engineering.Finally,the challenges and the future research outlook in the solar-to-fuel conversion are highlighted to push forward the design of high-performance bismuth-based photocatalyst in realizing commercialscale solar-to-fuel conversion.展开更多
Since the first discovery of solar-driven water splitting catalyzed by TiO_(2) semiconductors,extensive research works have been devoted over the decades.Currently,the design of a photocatalyst with dual redox potenti...Since the first discovery of solar-driven water splitting catalyzed by TiO_(2) semiconductors,extensive research works have been devoted over the decades.Currently,the design of a photocatalyst with dual redox potential is of prominent interest to fully utilize both photogenerated electrons and holes in the redox reactions.Among all,the coproduction of H_(2) and O_(2) from water using metal-free carbon nitride(g-C_(3)N_(4))has been viewed as a rising star in this field.However,the hole-mediated oxidation reaction is commonly recognized as the rate-determining step,which drastically leads to poor overall water splitting efficiency.On top of that,rapid recombination and undesirable back reaction appeared as one of the challenging parts in overall water splitting.In this review,the up-to-date advances in modified g-C_(3)N_(4)-based photocatalysts toward efficient overall water splitting are summarized,which are mainly classified into structural and defect engineering,single-atom catalysis,cocatalyst loading,and heterojunction construction.This review also addresses the underlying idea and concept to tackle the aforementioned problem with the use of emerging modification strategies,hence serving as the guiding star for future research.Despite the outstanding breakthrough thus far,critical recommendations related to g-C_(3)N_(4) photocatalytic systems are prospected to pave the way toward the implementation in the practical energy production process.展开更多
Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these field...Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these fields.They can decompose and remove organic pollutants from the aqueous environment,and prepare some fine chemicals.Moreover,they also can carry out some important reactions,such as 02 reduction reaction(ORR),O2 evolution reaction(OER),H2 evolution reaction(HER),CO2 reduction reaction(C02 RR),and N2 fixation(NRR).For catalytic reactions,it is the key to develop high-performance catalysts to meet the demand fortargeted reactions.In recentyears,two-dimensional(2 D) materials have attracted great interest in environmental catalysis due to their unique layered structures,which offer us to make use of their electronic and structural characteristics.Great progress has been made so far,including graphene,black phosphorus,oxides,layered double hydroxides(LDHs),chalcogenides,bismuth-based layered compounds,MXenes,metal organic frameworks(MOFs),covalent organic frameworks(COFs),and others.This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis.We hope that this roadmap can give the useful guidance to researchers in future researches,and provide the research directions.展开更多
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
基金Ministry of Higher Education,Malaysia,Grant/Award Number:FRGS/1/2020/TK0/XMU/02/1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515111019+1 种基金Hengyuan International Sdn.Bhd.,Grant/Award Number:EENG/0003Xiamen University Malaysia,Grant/Award Numbers:IENG/0038,ICOE/0001,XMUMRF/2019-C3/IENG/0013,XMUMRF/2021-C8/IENG/0041。
文摘Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.
基金the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(grant number 161008)the Basic Research Program of Shenzhen(grant number JCYJ20190809120015163)+4 种基金the Key R&D Program of Hubei province(grant number 2020CFA087)the Fundamental Research Funds for the Central Universities(grant number 2019III-034)the Xiamen University Malaysia Research Fund(grant number XMUMRF/2019-C3/IENG/0013)the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(grant number FRGS/1/2020/TK02/XMU/02/1)the Overseas Expertise Introduction Project(111 project)for Discipline Innovation of China(grant number B18038)。
文摘Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focuses in SACs.However,the in-depth understanding of the role that the coordination atoms of single atom play in the catalytic process is lacking.Herein,we proposed a graphene-like boroncarbon-nitride(BCN) monolayer as the support of single metal atom.The electrocatalytic nitrogen reduction reaction(eNRR) performances of 3 d,4 d transition metal(TM) atoms embedded in defective BCN were systematically investigated by means of density functional theory(DFT) computations.Our study shows that the TM-to-N and B-to-N π-back bonding can contribute to the activation of N_(2).Importantly,a combined effect is revealed between single TM atom and boron atom on eNRR:TM atom enhances the nitrogen reduction process especially in facilitating the N_(2) adsorption and the NH3 desorption,while boron atom modulates the bonding strength of key intermediates by balancing the charged species.Furthermore,Nb@BN3 possesses the highest electrocata lytic activity with limiting potential of-0.49 V,and exhibits a high selectivity for nitrogen reduction reaction(NRR) to ammonia compared with hydrogen evolution reaction(HER).As such,this work can stimulate a research doorway for designing multi-active sites of the anchored single atoms and the innate atoms of substrate based on the mechanistic insights to guide future eNRR research.
文摘太阳能驱动水裂解产氢是一种绿色能源技术,用于制备可再生和零碳排放燃料以实现可持续能源生产.近期,氮化碳(g-C_(3)N_(4))同素异形体C_(3)N_(5)的出现克服了g-C_(3)N_(4)的固有缺点,如光生载流子快速复合和可见光吸收差,而导致极低的光催化效率.本文将硼掺杂剂通过原子替换或间隙掺杂的方式引入到C_(3)N_(5)体系中,并利用密度泛函理论对纯C_(3)N_(5)和硼掺杂C_(3)N_(5)体系进行计算,考察了硼原子对C_(3)N_(5)电子和光学性能的影响以及其催化析氢反应(HER)机理.热力学计算结果表明,硼原子掺杂在C_(3)N_(5)体系中是可行且有利的.在N_(3)位氮原子被硼原子取代(BN_(3)-C_(3)N_(5))后,带隙(0.6 e V)变窄.与纯C_(3)N_(5)相比,硼掺杂剂通过Volmer Tafel和Volmer Heyrovsky机制降低了酸性和碱性介质中HER反应中决定步骤的反应能垒.BN_(3)-C_(3)N_(5)表面的氢吸附吉布斯自由能(0.11 e V)与Pt/C催化剂(-0.09 e V)相当.综上,非金属掺杂碳可提高氮化物的催化性能,对未来该方向研究提供一定借鉴.
基金Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref No:FRGS/1/2020/TK0/XMU/02/1)We would also like to thank the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF-APP)(S.22015)+5 种基金The authors would also like to acknowledge the financial support provided by the National Natural Science Foundation of China(Ref No.22202168)Guangdong Basic and Applied Basic Re-search Foundation(Ref No.2021A1515111019)We would also like to acknowledge the financial support from the State Key Labo-ratory of Physical Chemistry of Solid Surfaces,Xiamen University(No.2023X11)This work is also funded by Xiamen University Malaysia Investigatorship Grant(Grant No.IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001,XMUMRF/2021-C8/IENG/0041 and XMUMRF/2019-C3/IENG/0013)Hengyuan International Sdn.Bhd.(Grant No.EENG/0003).
文摘Two-dimensional(2D)materials have come to light due to their unique thickness that owns abundant exposed edges with enhanced electrocatalytic properties.2D molybdenum disulfide(MoS_(2))nanosheet has aroused considerable attention due to its tunable surface chemistry and high electrochemical sur-face area.Nonetheless,several shortcomings associated with MoS_(2),such as its naturally existing semi-conducting 2H phase,which has limited active sites due to the inert basal plane,restrict its application in water electrocatalysis.Taking into account the benefits of the 1T/2H phase of MoS_(2),as well as the importance of engineering 2D/2D heterojunction interface for boosted electrocatalysis,metallic Ti_(3)C_(2)Tx was integrated with 1T/2H MoS_(2) to develop 2D/2D 1T/2H MoS_(2)/Ti_(3)C_(2)Tx heterostructured nanocompos-ites.Herein,with only 25%of the intercalating agent,1T/2H MoS_(2) with the highest 1T phase content of~82%was successfully synthesized.It was further incorporated with 1 wt%of Ti_(3)C_(2)Tx through a com-bination of ultrasonication and mechanical stirring process.The 1T/2H MoS_(2)(25D)/Ti_(3)C_(2)Tx-1(MTC-1)manifested outstanding electrocatalytic performance with an overpotential and Tafel slope of 280 mV(83.80 mV dec^(-1))and 300 mV(117.2 mV dec^(-1)),for catalyzing acidic and alkaline medium HER,respec-tively.Pivotally,the as-prepared catalysts also illustrated long-term stability for more than 40 h.The coupling method for the 2D nanosheets is crucial to suppress the oxidation of Ti_(3)C_(2)Tx and the restack-ing issue of 2D nanosheets.The superior HER activity is ascribed to the synergistic effect between the heterostructure,enhancing the electronic structure and charge separation capability.The intrinsic prop-erty of the catalyst further confirms by turnover frequency(TOF)calculation.As such,this research paves the way for designing high-efficiency 2D electrocatalysts and sheds light on the further advancement of tunable 2D electrocatalysts for robust water splitting and beyond.
基金financial support provided by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref no.FRGS/1/2020/TK0/XMU/02/1)The authors would like to thank the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF)(S.22015)+6 种基金financial support provided by theNationalNatural Science Foundation of China(Ref no.22202168)the Guangdong Basic and Applied Basic Research Foundation(Ref no.2021A1515111019)supported by the Embassy of the People’s Republic of China in Malaysia(EENG/0045)financial support from the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(Ref no.2023X11)funded by the Xiamen University Malaysia Investigatorship Grant(grant no.IENG/0038)the Xiamen University Malaysia Research Fund(ICOE/0001 and XMUMRF/2021-C8/IENG/0041)the Hengyuan International Sdn Bhd(grant no.EENG/0003).
文摘IntegratingH_(2)O_(2)evolution with oxidative organic synthesis in a semiconductordriven photoredox reaction is highly attractive since H_(2)O_(2)and high-value chemicals can be concurrently produced using solar light as the only energy input.The dual-functional photocatalytic approach,free from sacrificial agents,enables simultaneous production of H_(2)O_(2)and high-value organic chemicals.This strategy promises a green and sustainable organic synthesis with minimal greenhouse gas emissions.In this review,we first elucidate the fundamental principles of cooperative photoredox integration of H_(2)O_(2)synthesis and selective organic oxidation with simultaneous utilization of photoexcited electrons and holes over semiconductor-based photocatalysts.Afterwards,a thorough review on the recent advancements of cooperative photoredox synthesis of H_(2)O_(2)and value-added chemicals is presented.Notably,in-depth discussions and insights into the techniques for unravelling the photoredox reaction mechanisms are elucidated.Finally,critical challenges and prospects in this thriving field are comprehensively discussed.It is envisioned that this review will serve as a pivotal guidance on the rational design of such dual-functional photocatalytic system,thereby further stimulating the development of economical and environmentally benignH_(2)O_(2)and high-value chemicals production.
基金the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref no:FRGS/1/2020/TK0/XMU/02/1)the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF-APP)(S.22015)+4 种基金the National Natural Science Foundation of China(Ref no:22202168)Guangdong Basic and Applied Basic Research Foundation(Ref no:2021A1515111019)Xiamen University Malaysia Investigatorship Grant(Grant no:IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001,XMUMRF/2021-C8/IENG/0041 and XMUMRF/2019-C3/IENG/0013)Hengyuan International Sdn.Bhd.(Grant no:EENG/0003).
文摘To date,extensively high demand for hydrogen peroxide(H_(2)O_(2))has been predominantly supplied by the anthraquinone process for several worldwide applications,encompassing wastewater treatment,environmental remediation,and chemical synthesis.However,the compacted manufacturing,massive energy input and the release of tremendous wastes have restricted commercialization feasibility.Regards to mitigate such issues,the photocatalytic H_(2)O_(2)production by utilizing g-C_(3)N_(4)catalysts has endowed a greener,sustainable and promising alternative,considering that it involves water and oxygen as reactants in the present of sunlight as energy input.Herein,we have manifested a comprehensive overview of the research progress for g-C_(3)N_(4)-based semiconductors for photocatalytic H_(2)O_(2)generation.This review has systematically elucidated state-of-the-art development of different modifications on g-C_(3)N_(4)to unravel the fundamental mechanism of H_(2)O_(2)evolution via oxygen reduction reaction(ORR)and water oxidation reaction(WOR).In addition,the contribution made by vacancy introduction,doping,heterogenization,and co-catalyst passivation with respect to photoefficiency enhancement have been clarified.Furthermore,the current challenges and perspective of future development directions on photocatalytic H_(2)O_(2)production have also been highlighted.As such,g-C_(3)N_(4)stands as the next step toward advancement in the configuration and modulation of high-efficiency photocatalysts.
基金supports provided by the National Natural Science Foundation of China(No.22202168)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515111019)+2 种基金This work was also funded by the Xiamen University Malaysia Investigatorship Grant(No.IENG/0038)the Xiamen University Malaysia Research Fund(Nos.ICOE/0001,XMUMRF/2021-C8/IENG/0041,and XMUMRF/2019-C3/IENG/0013)the Hengyuan International Sdn.Bhd.(No.EENG/0003).
文摘Hydrogen economy based on electrochemical water splitting exemplified one of the most promising means for overcoming the rapid consumption of fossil fuels and the serious deterioration of global climate.The development of earth-abundant,efficient,and durable electrocatalysts for hydrogen evolution reaction(HER)plays a vital role in the commercialization of water electrolysis.Regard,the self-supported electrode with unique nitrogen-doped reduced graphene oxide(N-rGO)nanoflakes and WS_(2) hierarchical nanoflower that were grown directly on carbon cloth(CC)substrate(WS_(2)/N-rGO/CC)was successfully synthesized using a facile dual-step hydrothermal approach.The as-synthesized 50%1T/2H-WS_(2)/N-rGO/CC(WGC),which possessed high metallic 1T phase of 57%not only efficiently exposed more active sites and accelerated mass/charge diffusion,but also endowed excellent structural lustiness,robust stability,and durability at a high current density.As a result,the 50%WGC exhibited lower overpotentials and Tafel slopes of 21.13 mV(29.55 mV∙dec^(-1))and 80.35 mV(137.02 mV∙dec^(-1))as compared to 20%Pt-C/CC,respectively for catalyzing acidic and alkaline hydrogen evolution reactions.Pivotally,the as-synthesized 50%WGC also depicted long-term stability for more than 8 h in the high-current-density regions(100 and 220 mA∙cm^(-2)).In brief,this work reveals a self-supported electrode as an extraordinary alternative to Pt-based catalysts for HER in a wide pH range,while paving a facile strategy to develop advanced electrocatalysts with abundant heterointerfaces for practical applications in energy-saving hydrogen production.
文摘Tailored synthesis of well-defined anatase TiO_(2)-based crystals with exposed{001}facets has stimulated incessant research interest worldwide due to their scientific and technological importance.Herein,anatase nitrogen-doped TiO_(2)(N-TiO_(2))nanoparticles with exposed{001}facets deposited on the graphene(GR)sheets(N-TiO_(2)-001/GR)were synthesized for the first time via a one-step solvothermal synthetic route using NH4F as the morphology-controlling agent.The experimental results exemplified that GR was uniformly covered with anatase N-TiO_(2) nanoparticles(10-17 nm),exposing the{001}facets.The percentage of exposed{001}facets in the N-TiO_(2)-001/GR nanocomposites was calculated to be ca.35%.Also,a red shift in the absorption edge and a strong absorption in the visible light range were observed due to the formation of Ti-O-C bonds,resulting in the successful narrowing of the band gap from 3.23 to 2.9 eV.The photocatalytic activities of the as-prepared photocatalysts were evaluated for CO_(2) reduction to produce CH,in the presence of water vapor under ambient temperature and atmospheric pressure using a low-power 15 W energy-saving daylight lamp as the visible light source--in contrast to the most commonly employed high-power xenon lamps--which rendered the process economically and practically feasible.Among all the studied photocatalysts,the N-TiO_(2)-001/GR nanocomposites exhibited the greatest CH4 yield of 3.70 p-mol'gcatalyst 1,approxi-mately 11-fold higher activity than the TiO_(2)-001.The enhancement of photocatalyfic performance was ascribed to the effective charge anti-recombination of graphene,high absorption of visible light region relative to the{101}facets.and high catalytic activity of{001}facets.
文摘In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed thehighest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. Thetotal amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 molgcatalyst-1, respectively. These values were 3.6 and 2.28 times higher, respectively, than thearn*ounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity.
基金financial supports by the Young Scientists Fund of the National Natural Science Foundation of China (11604249)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (161008)+3 种基金the Foundation of the State Key Laboratory of Optical Fiber and Cable Manufacture Technology (SKLD1602)the State Key Laboratory of Refractors and Metallurgy (G201605), the Fundamental Research Funds for the Central Universities (2019-III-034)the Research Board of the State Key Laboratory of Silicate Materials for Architecturesfinancial supports and grants from Xiamen University Malaysia,the Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/ IENG/0013)
文摘The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)including grap-N,sp-N(Ⅰ)and sp-N(Ⅱ)GDY is systematically investigated as metal-free oxygen reduction electrocatalysts via density functional theory(DFT).Our results indicate that the doped nitrogen atom can significantly improve the oxygen(O2)adsorption activity of GDY through activating its neighboring carbon atoms.The free-energy landscape is employed to describe the electrochemical oxygen reduction reaction(ORR)in both O2 dissociation and association mechanisms.It is revealed that the association mechanism can provide higher ORR onset potential than dissociation mechanism on most of the substrates.Especially,sp-N(Ⅱ)GDY exhibits the highest ORR electrocatalytic activity through increasing the theoretical onset potential to 0.76 V.This work provides an atomic-level insight for the electrochemical ORR mechanism on metal-free N-doped GDY.
基金support provided by the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref no:FRGS/1/2020/TK0/XMU/02/1)This work is also funded by Xiamen University Malaysia Investigatorship Grant(Grant no:IENG/0038)+1 种基金Xiamen University Malaysia Research Fund(XMUMRF/2021-C8/IENG/0041 and XMUMRF/2019-C3/IENG/0013)Hengyuan International Sdn.Bhd.(Grant no:EENG/0003).
文摘CO_(2)capture and conversion has been prospected as an auspicious technology to simultaneously tackle the rise in global CO_(2)emission and produce valueadded fuels with the goal of accomplishing carbon neutrality.A sustainable route to achieve this is via the utilization of solar energy,thereby harnessing the abundant and nonexhaustive resource to shift our reliance away from rapidly depleting fossil fuels.Graphitic carbon nitride(g-C_(3)N_(4))and its allotrope have earned its rank as a fascinating metal-free photocatalyst due to its superior stability,high surface-area-to-volume ratio,and tunable surface engineering.By leveraging these properties,robust carbon nitride-based nanostructures are engineered for photocatalytic CO_(2)conversion to energy-rich C_(1)-C_(2) product,which is indispensable in the chemical industry.Thus,this review presents the latest panorama of experimental and computational research on tuning the local electronic,surface chemical coordination environment,charge dynamics and optical properties of low-dimensional carbon nitride and its allotropes toward highly selective and efficient CO_(2)photoconversion.To name a few,structural engineering,point-defect engineering,heterojunction construction,and cocatalyst loading.To advance this frontier,critical insights are elucidated to establish the structure-performance relationship and unravel primary factors dictating the selectivity of C_(1)-C_(2) molecules from CO_(2)reduction.External-field assisted photocatalysis such as with electric(photoelectro-)and heat(photothermal)is discussed to uncover the synergistic contributions that drive the development in photochemistry.Last,future challenges and prospects are outlined for the potential application of solar-driven CO_(2)conversion,along with the scale-up strategy from the economic viewpoint toward the rational development of high-efficiency carbon nitride catalysts.
基金the financial support provided by the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(No.FRGS/1/2020/TK0/XMU/02/1)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515111019)+1 种基金funded by Xiamen University Malaysia Investigatorship Grant(No.IENG/0038),Xiamen University Malaysia Research Fund(Nos.XMUMRF/2021-C8/IENG/0041 and XMUMRF/2019-C3/IENG/0013)Hengyuan International Sdn.Bhd.(No.EENG/0003).
文摘With the fast-pace digitalization evolution in the current generation’s lifestyle and the industry revolution,the energy demand has been skyrocketed.Recently,the two-dimensional(2D)bismuth-based nanomaterials emerged as a promising photocatalyst candidate in solar fuel conversion,not only for its exceptional light absorption capability and tunable optical properties,but it also can be synthesized into diverse variety of nanomaterials with different ranges of potential gap and band position to fulfill the potential requirement of wide range of photocatalytic reaction.Yet,the weak light harvesting ability and ultrafast charge recombination has restricted its potential in commercial application.Thus,recent researches have been focusing on tackling these issues by incorporating some modification strategies such as heteroatom doping,vacancy engineering,facet engineering,bismuth rich strategy and heterojunction engineering.Herein,this review article presents the state-of-the-art modifications on 2D bismuth-based parent material,specifically on the relationship between each of the modification strategy on the electronic properties and surface chemistry in achieving boosted photocatalytic performance.In the view of the unique charge interaction between two semiconductors with different dimensions,we systematically discuss the rational heterostructure design from the dimensionality perspective,namely,point-to-face,line-to-face,face-to-face,and bulk-to-face in solar fuel conversion to provide inspiring insights for future interface engineering.Finally,the challenges and the future research outlook in the solar-to-fuel conversion are highlighted to push forward the design of high-performance bismuth-based photocatalyst in realizing commercialscale solar-to-fuel conversion.
基金The authors would like to acknowledge the financial support provided by the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref no:FRGS/1/2020/TK0/XMU/02/1)The authors would also like to thank the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF)(S.22015)+4 种基金The authors would also like to acknowledge the financial support provided by the National Natural Science Foundation of China(Ref no:22202168)Guangdong Basic and Applied Basic Research Foundation(Ref no:2021A1515111019)Xiamen University Malaysia Investigatorship Grant(Grant no:IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001,XMUMRF/2021-C8/IENG/0041,and XMUMRF/2019-C3/IENG/0013)Hengyuan International Sdn.Bhd.(Grant no:EENG/0003).
文摘Since the first discovery of solar-driven water splitting catalyzed by TiO_(2) semiconductors,extensive research works have been devoted over the decades.Currently,the design of a photocatalyst with dual redox potential is of prominent interest to fully utilize both photogenerated electrons and holes in the redox reactions.Among all,the coproduction of H_(2) and O_(2) from water using metal-free carbon nitride(g-C_(3)N_(4))has been viewed as a rising star in this field.However,the hole-mediated oxidation reaction is commonly recognized as the rate-determining step,which drastically leads to poor overall water splitting efficiency.On top of that,rapid recombination and undesirable back reaction appeared as one of the challenging parts in overall water splitting.In this review,the up-to-date advances in modified g-C_(3)N_(4)-based photocatalysts toward efficient overall water splitting are summarized,which are mainly classified into structural and defect engineering,single-atom catalysis,cocatalyst loading,and heterojunction construction.This review also addresses the underlying idea and concept to tackle the aforementioned problem with the use of emerging modification strategies,hence serving as the guiding star for future research.Despite the outstanding breakthrough thus far,critical recommendations related to g-C_(3)N_(4) photocatalytic systems are prospected to pave the way toward the implementation in the practical energy production process.
基金the National Natural Science Foundation of China (Nos. 21603129 & 20871167)National Natural Science Foundation of Shanxi Province (No. 201601D202021)the Foundation of State Key Laboratory of Coal Conversion (No. J1819-903) for the financial support
文摘Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these fields.They can decompose and remove organic pollutants from the aqueous environment,and prepare some fine chemicals.Moreover,they also can carry out some important reactions,such as 02 reduction reaction(ORR),O2 evolution reaction(OER),H2 evolution reaction(HER),CO2 reduction reaction(C02 RR),and N2 fixation(NRR).For catalytic reactions,it is the key to develop high-performance catalysts to meet the demand fortargeted reactions.In recentyears,two-dimensional(2 D) materials have attracted great interest in environmental catalysis due to their unique layered structures,which offer us to make use of their electronic and structural characteristics.Great progress has been made so far,including graphene,black phosphorus,oxides,layered double hydroxides(LDHs),chalcogenides,bismuth-based layered compounds,MXenes,metal organic frameworks(MOFs),covalent organic frameworks(COFs),and others.This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis.We hope that this roadmap can give the useful guidance to researchers in future researches,and provide the research directions.