准确判别燃爆状态是测量燃爆延滞期并计算爆发点参数的关键。针对单一传感器判别效果不佳、多个传感器判别结果相互冲突的问题,利用D-S(Dempster-Shafer)证据理论对冲突证据进行联合判别。首先根据含能材料燃爆特性和爆发点测试原理,设...准确判别燃爆状态是测量燃爆延滞期并计算爆发点参数的关键。针对单一传感器判别效果不佳、多个传感器判别结果相互冲突的问题,利用D-S(Dempster-Shafer)证据理论对冲突证据进行联合判别。首先根据含能材料燃爆特性和爆发点测试原理,设计了基于温度和声音的联合判别装置;从实验数据出发,采用模型拟合提取温度特征值,以及声音信号最大值为声音特征值。其次,根据Sigmoid模型求解出BPA(Basic Probability Assignment)函数,并通过信度熵对可能存在冲突的BPA函数值进行预处理;最终,利用D-S证据理论进行燃爆状态联合判别。实验结果表明,所提方法有效提高了实验装置的鲁棒性和状态判别的置信概率,燃爆判别准确率达到了96.5%,优于温度、声音等单一传感器的判别效果。展开更多
文摘准确判别燃爆状态是测量燃爆延滞期并计算爆发点参数的关键。针对单一传感器判别效果不佳、多个传感器判别结果相互冲突的问题,利用D-S(Dempster-Shafer)证据理论对冲突证据进行联合判别。首先根据含能材料燃爆特性和爆发点测试原理,设计了基于温度和声音的联合判别装置;从实验数据出发,采用模型拟合提取温度特征值,以及声音信号最大值为声音特征值。其次,根据Sigmoid模型求解出BPA(Basic Probability Assignment)函数,并通过信度熵对可能存在冲突的BPA函数值进行预处理;最终,利用D-S证据理论进行燃爆状态联合判别。实验结果表明,所提方法有效提高了实验装置的鲁棒性和状态判别的置信概率,燃爆判别准确率达到了96.5%,优于温度、声音等单一传感器的判别效果。