The Mesozoic and Cenozoic strata in the Junggar basin developed two sets of shallow to semi-deep lacustrine shale, namely, the Cretaceous Qingshuihe Formation (K_(1q)) and the Paleogene Anjihaihe Formation (E_(2-3a))....The Mesozoic and Cenozoic strata in the Junggar basin developed two sets of shallow to semi-deep lacustrine shale, namely, the Cretaceous Qingshuihe Formation (K_(1q)) and the Paleogene Anjihaihe Formation (E_(2-3a)). Through organic petrology and scanning electron microscope (SEM) observation, it is found that the primary hydrocarbon-generating organic matter (OM) in the two sets of strata is different. The biological precursor of the E_(2-3a) OM is mainly green algae (Pediastrum), while the precursor of K_(1q) kerogen is mainly cyanobacteria (Oscillatoria). Then, the E_(2-3a) green algae-rich shale and K_(1q) cyanobacteria-rich shale were subjected to hydrous pyrolysis and kinetic analysis, respectively. The results show that the evolution modes of hydrocarbon generation of the typical shales are very different. Green algae have the characteristics of a low oil generation threshold, heavy oil quality, and no prominent oil peak, while cyanobacteria have the characteristics of late oil generation, concentrated hydrocarbon generation, and relatively light oil quality. The characteristics of oil generation can also be well reflected in the composition evolution of the crude oil components. The carbon isotope of gas, kerogen, and extracts of the E_(2-3a) green algae-rich shale are significantly heavier than the K_(1q) cyanobacteria-rich shale, which may be related to the living habits of their biological precursors, carbon source usage, photosynthesis efficiency, and carbon fixation efficiency.展开更多
基金supported by Xinjiang Oilfield Company of China(No.2020-C4006).
文摘The Mesozoic and Cenozoic strata in the Junggar basin developed two sets of shallow to semi-deep lacustrine shale, namely, the Cretaceous Qingshuihe Formation (K_(1q)) and the Paleogene Anjihaihe Formation (E_(2-3a)). Through organic petrology and scanning electron microscope (SEM) observation, it is found that the primary hydrocarbon-generating organic matter (OM) in the two sets of strata is different. The biological precursor of the E_(2-3a) OM is mainly green algae (Pediastrum), while the precursor of K_(1q) kerogen is mainly cyanobacteria (Oscillatoria). Then, the E_(2-3a) green algae-rich shale and K_(1q) cyanobacteria-rich shale were subjected to hydrous pyrolysis and kinetic analysis, respectively. The results show that the evolution modes of hydrocarbon generation of the typical shales are very different. Green algae have the characteristics of a low oil generation threshold, heavy oil quality, and no prominent oil peak, while cyanobacteria have the characteristics of late oil generation, concentrated hydrocarbon generation, and relatively light oil quality. The characteristics of oil generation can also be well reflected in the composition evolution of the crude oil components. The carbon isotope of gas, kerogen, and extracts of the E_(2-3a) green algae-rich shale are significantly heavier than the K_(1q) cyanobacteria-rich shale, which may be related to the living habits of their biological precursors, carbon source usage, photosynthesis efficiency, and carbon fixation efficiency.