The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of w...The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of wetland degradation on the structure and relative abundance of nitrogencycling(nitrogen-fixing,ammonia-oxidizing,and denitrifying) microbial communities in 3 soil types(intact wetland:marsh soil;early degrading wetland:marsh meadow soil;and degraded wetland:meadow soil) using 454-pyrosequencing.The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types.Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogenfixing and denitrifying microbial bacteria differed at the class,order,family,and genus levels among the 3soil types.At the genus level,the majority of nitrogenfixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils;whereas those related to Geobacter originated from meadow soil.The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh(except for the 40-60 cm layer),marsh meadow and meadow soils;whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil.The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils;whereas those related to Herbaspirillum originated from meadow soil.The distribution of operational taxonomic units(OTUs)and species were correlated with soil type based upon Venn and Principal Coordinates Analysis(PCoA).Changes in soil type,caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing,ammonia-oxidizing,and denitrifying microbial communities.展开更多
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal commun...Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.展开更多
基金financially supported by the 11th Five Years Key Programs for Science and Technology Development of China (Grant No.2007BAC18B03)
文摘The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of wetland degradation on the structure and relative abundance of nitrogencycling(nitrogen-fixing,ammonia-oxidizing,and denitrifying) microbial communities in 3 soil types(intact wetland:marsh soil;early degrading wetland:marsh meadow soil;and degraded wetland:meadow soil) using 454-pyrosequencing.The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types.Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogenfixing and denitrifying microbial bacteria differed at the class,order,family,and genus levels among the 3soil types.At the genus level,the majority of nitrogenfixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils;whereas those related to Geobacter originated from meadow soil.The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh(except for the 40-60 cm layer),marsh meadow and meadow soils;whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil.The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils;whereas those related to Herbaspirillum originated from meadow soil.The distribution of operational taxonomic units(OTUs)and species were correlated with soil type based upon Venn and Principal Coordinates Analysis(PCoA).Changes in soil type,caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing,ammonia-oxidizing,and denitrifying microbial communities.
基金financially supported by the National Key Technology R&D Program (Grant No. 2007BAC18B03)the Sichuan Provincial Key Technology R&D Program (Grant No. 2012SZ0045)
文摘Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.