Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C est...Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.展开更多
Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil ...Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil (soil R). With increasing norfloxacin concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity of SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in all bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and Koc were achieved in soil R when the equilibrium solution pH was 6. The norfloxacin sorption was also influenced by the exogenous Cu^2+, which depended on the soil types and Cu^2+ concentrations. With increasing Cu^2+ concentrations in solution, generally, sorption amount, KD and Koc for norfloxacin in soils increased and were up to a peak at 100 mg/L Cu^2+, and then the sorption amount decreased regardless of norfloxacin levels.展开更多
文摘Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.
基金supported by the National Key Basic Research Support Foundation of China (No.2005CB121105), the Ministry of Science and Technology of China (No. 2006BAD05B05)the International Foundation for Science (No. C/4076).
文摘Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil (soil R). With increasing norfloxacin concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity of SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in all bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and Koc were achieved in soil R when the equilibrium solution pH was 6. The norfloxacin sorption was also influenced by the exogenous Cu^2+, which depended on the soil types and Cu^2+ concentrations. With increasing Cu^2+ concentrations in solution, generally, sorption amount, KD and Koc for norfloxacin in soils increased and were up to a peak at 100 mg/L Cu^2+, and then the sorption amount decreased regardless of norfloxacin levels.