期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
AI Based Traffic Flow Prediction Model for Connected and Autonomous Electric Vehicles 被引量:2
1
作者 P.Thamizhazhagan M.Sujatha +4 位作者 S.Umadevi K.Priyadarshini velmurugan subbiah parvathy Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第2期3333-3347,共15页
There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric ... There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric Vehicle(CAEV)technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking.Therefore,Traffic Flow Prediction(TFP)is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning(DL)techniques.In this view,the current research paper presents an artificial intelligence-based parallel autoencoder for TFP,abbreviated as AIPAE-TFP model in CAEV.The presented model involves two major processes namely,feature engineering and TFP.In feature engineering process,there are multiple stages involved such as feature construction,feature selection,and feature extraction.In addition to the above,a Support Vector Data Description(SVDD)model is also used in the filtration of anomaly points and smoothen the raw data.Finally,AIPAE model is applied to determine the predictive values of traffic flow.In order to illustrate the proficiency of the model’s predictive outcomes,a set of simulations was performed and the results were investigated under distinct aspects.The experimentation outcomes verified the effectual performance of the proposed AIPAE-TFP model over other methods. 展开更多
关键词 Autonomous electric vehicle traffic flow predictive automation industry connected vehicles seep learning
在线阅读 下载PDF
Effective Return Rate Prediction of Blockchain Financial Products Using Machine Learning
2
作者 K.Kalyani velmurugan subbiah parvathy +4 位作者 Hikmat A.M.Abdeljaber T.Satyanarayana Murthy Srijana Acharya Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第1期2303-2316,共14页
In recent times,financial globalization has drastically increased in different ways to improve the quality of services with advanced resources.The successful applications of bitcoin Blockchain(BC)techniques enable the... In recent times,financial globalization has drastically increased in different ways to improve the quality of services with advanced resources.The successful applications of bitcoin Blockchain(BC)techniques enable the stockholders to worry about the return and risk of financial products.The stockholders focused on the prediction of return rate and risk rate of financial products.Therefore,an automatic return rate bitcoin prediction model becomes essential for BC financial products.The newly designed machine learning(ML)and deep learning(DL)approaches pave the way for return rate predictive method.This study introduces a novel Jellyfish search optimization based extreme learning machine with autoencoder(JSO-ELMAE)for return rate prediction of BC financial products.The presented JSO-ELMAE model designs a new ELMAE model for predicting the return rate of financial products.Besides,the JSO algorithm is exploited to tune the parameters related to the ELMAE model which in turn boosts the classification results.The application of JSO technique assists in optimal parameter adjustment of the ELMAE model to predict the bitcoin return rates.The experimental validation of the JSO-ELMAE model was executed and the outcomes are inspected in many aspects.The experimental values demonstrated the enhanced performance of the JSO-ELMAE model over recent state of art approaches with minimal RMSE of 0.1562. 展开更多
关键词 Financial products blockchain return rate prediction model machine learning parameter optimization
在线阅读 下载PDF
Deep Learning Enabled Predictive Model for P2P Energy Trading in TEM
3
作者 Pudi Sekhar T.J.Benedict Jose +4 位作者 velmurugan subbiah parvathy E.Laxmi Lydia Seifedine Kadry Kuntha Pin Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2022年第4期1473-1487,共15页
With the incorporation of distributed energy systems in the electric grid,transactive energy market(TEM)has become popular in balancing the demand as well as supply adaptively over the grid.The classical grid can be u... With the incorporation of distributed energy systems in the electric grid,transactive energy market(TEM)has become popular in balancing the demand as well as supply adaptively over the grid.The classical grid can be updated to the smart grid by the integration of Information and Communication Technology(ICT)over the grids.The TEM allows the Peerto-Peer(P2P)energy trading in the grid that effectually connects the consumer and prosumer to trade energy among them.At the same time,there is a need to predict the load for effectual P2P energy trading and can be accomplished by the use of machine learning(DML)models.Though some of the short term load prediction techniques have existed in the literature,there is still essential to consider the intrinsic features,parameter optimization,etc.into account.In this aspect,this study devises new deep learning enabled short term load forecasting model for P2P energy trading(DLSTLF-P2P)in TEM.The proposed model involves the design of oppositional coyote optimization algorithm(OCOA)based feature selection technique in which the OCOA is derived by the integration of oppositional based learning(OBL)concept with COA for improved convergence rate.Moreover,deep belief networks(DBN)are employed for the prediction of load in the P2P energy trading systems.In order to additional improve the predictive performance of the DBN model,a hyperparameter optimizer is introduced using chicken swarm optimization(CSO)algorithm is applied for the optimal choice of DBN parameters to improve the predictive outcome.The simulation analysis of the proposed DLSTLF-P2P is validated using the UK Smart Meter dataset and the obtained outcomes demonstrate the superiority of the DLSTLF-P2P technique with the maximum training,testing,and validation accuracy of 90.17%,87.39%,and 87.86%. 展开更多
关键词 Energy trading distributed systems power generation load forecasting deep learning PEER-TO-PEER
在线阅读 下载PDF
Deep Learning Enabled Object Detection and Tracking Model for Big Data Environment
4
作者 K.Vijaya Kumar E.Laxmi Lydia +4 位作者 Ashit Kumar Dutta velmurugan subbiah parvathy Gobi Ramasamy Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第11期2541-2554,共14页
Recently,big data becomes evitable due to massive increase in the generation of data in real time application.Presently,object detection and tracking applications becomes popular among research communities and finds u... Recently,big data becomes evitable due to massive increase in the generation of data in real time application.Presently,object detection and tracking applications becomes popular among research communities and finds useful in different applications namely vehicle navigation,augmented reality,surveillance,etc.This paper introduces an effective deep learning based object tracker using Automated Image Annotation with Inception v2 based Faster RCNN(AIA-IFRCNN)model in big data environment.The AIA-IFRCNN model annotates the images by Discriminative Correlation Filter(DCF)with Channel and Spatial Reliability tracker(CSR),named DCF-CSRT model.The AIA-IFRCNN technique employs Faster RCNN for object detection and tracking,which comprises region proposal network(RPN)and Fast R-CNN.In addition,inception v2 model is applied as a shared convolution neural network(CNN)to generate the feature map.Lastly,softmax layer is applied to perform classification task.The effectiveness of the AIA-IFRCNN method undergoes experimentation against a benchmark dataset and the results are assessed under diverse aspects with maximum detection accuracy of 97.77%. 展开更多
关键词 Object detection TRACKING convolutional neural network inception v2 image annotation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部