Laser Induced Breakdown Spectroscopic(LIBS)technique was used to detect calcium and silicon in an unknown sample.In this method plasma was generated by Nd∶YAG laser of wavelength 1 064 nm with energy 400 mJ and pulse...Laser Induced Breakdown Spectroscopic(LIBS)technique was used to detect calcium and silicon in an unknown sample.In this method plasma was generated by Nd∶YAG laser of wavelength 1 064 nm with energy 400 mJ and pulse duration between 5~10ns.The method was applied for the qualitative as well as quantitative analysis.In the qualitative analysis,the electron number density(Ne)of plasma containing calcium and silicon is determined showing that Neof neutral particles is equivalent to 1016(cm-3)whereas for ionized particles it is 1017(cm-3).Plasma temperature is measured using Boltzmann plot method which must be greater than 10 000 k.Intensity ratio method is used for the quantitative analysis shows various elements in abundance with calcium and silicon in majority.展开更多
Since ferrites are highly sensitive to the additives present in or added to them, extensive work, to improve the properties of basic ferrites, has been carded out on these aspects. The present paper reports the effect...Since ferrites are highly sensitive to the additives present in or added to them, extensive work, to improve the properties of basic ferrites, has been carded out on these aspects. The present paper reports the effects of composition, frequency, and temperature on the dielectric behavior of a series of CuxZn1-xFe2O4 ferdte samples prepared by the usual ceramic technique. In order to improve the properties of the samples, low cost Fe2O3 having 0.5 wt.% Si as an additive is selected to introduce into the system. The dielectric constant increases by increasing the Cu content, as the electron exchange of Cu^2+ 〈=〉 Cu^+ is responsible for the conduction and the polarization. However, the addition of Si could decrease the dielectric constant as it suppresses the ceramic grain growth and promotes the quality factor at higher frequencies. Dielectric constant ε′ and loss tangent tan δ of the mixed Cu-Zn ferrite decrease with increasing frequency, attributed to the Maxwell-Wagner polarization, which increases as the temperature increases.展开更多
文摘Laser Induced Breakdown Spectroscopic(LIBS)technique was used to detect calcium and silicon in an unknown sample.In this method plasma was generated by Nd∶YAG laser of wavelength 1 064 nm with energy 400 mJ and pulse duration between 5~10ns.The method was applied for the qualitative as well as quantitative analysis.In the qualitative analysis,the electron number density(Ne)of plasma containing calcium and silicon is determined showing that Neof neutral particles is equivalent to 1016(cm-3)whereas for ionized particles it is 1017(cm-3).Plasma temperature is measured using Boltzmann plot method which must be greater than 10 000 k.Intensity ratio method is used for the quantitative analysis shows various elements in abundance with calcium and silicon in majority.
文摘Since ferrites are highly sensitive to the additives present in or added to them, extensive work, to improve the properties of basic ferrites, has been carded out on these aspects. The present paper reports the effects of composition, frequency, and temperature on the dielectric behavior of a series of CuxZn1-xFe2O4 ferdte samples prepared by the usual ceramic technique. In order to improve the properties of the samples, low cost Fe2O3 having 0.5 wt.% Si as an additive is selected to introduce into the system. The dielectric constant increases by increasing the Cu content, as the electron exchange of Cu^2+ 〈=〉 Cu^+ is responsible for the conduction and the polarization. However, the addition of Si could decrease the dielectric constant as it suppresses the ceramic grain growth and promotes the quality factor at higher frequencies. Dielectric constant ε′ and loss tangent tan δ of the mixed Cu-Zn ferrite decrease with increasing frequency, attributed to the Maxwell-Wagner polarization, which increases as the temperature increases.