Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by...Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI.展开更多
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ...Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.展开更多
Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehe...Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehensive overview of recent advancements in the plasma-enabled synthesis of life’s building blocks, charting the complex environmental parameters believed to have surrounded life’s inception. This discussion elaborates on the fundamental mechanisms of discharge plasmas and their likely role in fostering conditions necessary for the origin of life on early Earth. We consider a variety of chemical reactions facilitated by plasma, specifically the synthesis of vital organic molecules - amino acids, nucleobases, sugars, and lipids. Further, we delve into the impact of plasmas on prebiotic chemical evolution. We expect this review to open new horizons for future investigations in plasma-related prebiotic chemistry that could offer valuable insights for unraveling the mysteries of life's origin.展开更多
Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolyt...Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolytes due to Li dendrites and instability of the solid electrolyte interphase.Recent research demonstrated that the problem can be alleviated via tetraethoxysilane(TEOS)treated lithium metal to form a silicon oxide layer on the lithium surface,however,its reaction mechanism is controversial.Herein,we deeply explore the reaction mechanism between TEOS and Li and propose:Fresh Li can directly react with TEOS even though no lithium hydroxide exists on the lithium surface,and the participation of water will accelerate the reaction process.Moreover,it was found that the silicon oxide layer can promote the uniform deposition of lithium ions by providing lithiophilic nucleation sites,thereby achieving a long cycle life of Li metal batteries.展开更多
Education is one of the most pivotal services in societal development as it cultivates a wide variety of skills, especially numeracy and literacy skills. However, students may have varying masteries of these two aptit...Education is one of the most pivotal services in societal development as it cultivates a wide variety of skills, especially numeracy and literacy skills. However, students may have varying masteries of these two aptitudes. Some attribute this to students’ intrinsic efforts while others attribute this to students’ capabilities and affiliated environments. In this work, I explore the numeracy and literacy aptitude patterns of students from various cultures based on a dataset that contains various demographic information, from which I deduced some preliminary trends. After the comparison of numerous machine learning algorithms, the optimal algorithm or combination of a few algorithms predicts students’ performances by classifying students of different backgrounds into various potential outcomes. The results suggest that proper resources and supports are necessary for enhanced learning.展开更多
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d...Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.展开更多
Background and Objective:Cardiac fibrosis is a pathological reparative process that follows myocardial infarctionand is associated with compromised cardiac systolic and reduced cardiac compliance.The Wnt signaling pat...Background and Objective:Cardiac fibrosis is a pathological reparative process that follows myocardial infarctionand is associated with compromised cardiac systolic and reduced cardiac compliance.The Wnt signaling pathway is closely implicated in organ fibrosis,and Notum,a highly conserved secreted inhibitor,modulates Wnt signaling.The objective of this study was to explore the role and mechanism of Notum in cardiac fibrosis.Methods:A mouse model of cardiac remodeling was established through left coronary artery ligation surgery,with the addition of Notum injection following myocardial infarction surgery.The protective effect of Notum on myocardial infarction was assessed by evaluating cardiac function,including survival rate,echocardiographic assessment,and cardiac contraction analyses.Inflammatory cell necrosis and infiltration were confirmed through H&E and Masson staining.The expression of fibrosis-related genes andβ-catenin pathway markers was detected using Western blot quantificational RT-PCR(qRT-PCR).Additionally,EdU,wound healing,and immunofluorescence staining analyses were performed to detect the effect of Notum's in transforming growth factor beta-1(TGF-β1)induced myofibroblast transformation.Results:The administration of Notum treatment resulted in enhanced survival rates,improved cardiac function,and decreased necrosis and infiltration of inflammatory cells in mice subjected to left coronary artery ligation.Furthermore,Notum effectively impeded the senescence of cardiac fibroblasts and hindered their pathological transformation into cardiac fibroblasts.Additionally,it significantly reduced collagen production and attenuated the activation of the Wnt/β-catenin pathway.Our preliminary investigations successfully demonstrated the therapeutic potential of Notum in both fibroblasts in vitro and in a mouse model of myocardial infarction-induced cardiac fibrosis in vivo.Conclusion:Notum inhibition of the Wnt/β-catenin signaling pathway and cardiac fibroblast senescence ultimately hampers the onset of cardiac fibrosis.Our findings suggest that Notum could represent a new therapeutic strategy for the treatment of cardiac fibrosis.展开更多
Poly(3,4-ethylenedioxythiophene)(PEDOT),heralded as the“king”of conducting polymers,is esteemed in bioelectronics for its mixed electronic and ionic conductivity,mechanical properties compatible with biological tiss...Poly(3,4-ethylenedioxythiophene)(PEDOT),heralded as the“king”of conducting polymers,is esteemed in bioelectronics for its mixed electronic and ionic conductivity,mechanical properties compatible with biological tissues,tunable healing ability and stability in diverse environments^([1]).Based on additive manufacturing of three-dimensional structures,PEDOT realizes the implementation in the efficient production of flexible bioelectronics,the construction of intricate electrode-neural implantations,and the development of smart brain-computer-interfaces^([2]).展开更多
In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are gene...In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are generally intermittent and random,hindering their wide application[2,3].To address this problem,there is an urgent need in effective and reliable energy storage device.展开更多
Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost...Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage.展开更多
Strawberry is increasingly used as a model plant for research on fruit growth and development.The transient gene manipulation(TGM)technique is widely used to determine the function of plant genes,including those in st...Strawberry is increasingly used as a model plant for research on fruit growth and development.The transient gene manipulation(TGM)technique is widely used to determine the function of plant genes,including those in strawberry fruits.However,its reliable application for the precise identification of gene function has been difficult owing to the lack of conditional optimization.In this study,we found that successful transient gene manipulation requires optimization,with the vector type,temperature,and fruit developmental stage being three major factors determining success.Notably,we found that transient gene manipulation was feasible only from the large green fruit stage onwards,making it especially suitable for identifying genes involved in strawberry fruit ripening.Furthermore,we established a method called percentage difference of phenotype(PDP),in which the functional effect of a gene could be precisely and efficiently identified in strawberry fruits.This method can be used to estimate the functional effect of a gene as a value from 0 to 100%,such that different genes can be quantitatively compared for their relative abilities to regulate fruit ripening.This study provides a useful tool for accelerating research on the molecular basis of strawberry fruit ripening.展开更多
We construct a two-dimensional, discrete-time quantum walk, exhibiting non-Hermitian skin effects under openboundary conditions. As a confirmation of the non-Hermitian bulk-boundary correspondence, we show that the em...We construct a two-dimensional, discrete-time quantum walk, exhibiting non-Hermitian skin effects under openboundary conditions. As a confirmation of the non-Hermitian bulk-boundary correspondence, we show that the emergence of topological edge states is consistent with the Floquet winding number, calculated using a non-Bloch band theory, invoking time-dependent generalized Brillouin zones. Further, the non-Bloch topological invariants associated with quasienergy bands are captured by a non-Hermitian local Chern marker in real space, defined via the local biorthogonal eigenwave functions of a non-unitary Floquet operator. Our work aims to stimulate further studies of non-Hermitian Floquet topological phases where skin effects play a key role.展开更多
Application of liquid metals and electrospun nanofibers offer a promising solution to insufficient resilience and human com-fort of wearable electronics.However,a sustainable manufacturing process is hindered by the l...Application of liquid metals and electrospun nanofibers offer a promising solution to insufficient resilience and human com-fort of wearable electronics.However,a sustainable manufacturing process is hindered by the low surface tension of liquid metal,and it's poor attachment to the surface of the fabric.This research reveals that tuning the pressure can control the adhesion of semiliquid metal(SLM)on substrates with varying roughness to achieve selective adhesion.Furthermore,a simple and rapid(30 s)fabrication method based on selective adhesion and low mobility of SLM is presented for preparing a multilayered monitoring device capable of measuring human body temperature and ECG signals for 24 h.This device exhibits excellent air permeability of 311.1 g·m^(-2)·h^(-1),water resistance(washing for 120 min).Our novel approach can inspire the development of methods for printing liquid metal circuits on roughness substrates and enable the practical use of waterproof and breathable wearable electronic devices in the future.展开更多
A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and...A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices.展开更多
Medullary sponge kidney(MSK)is a characteristic renal malformation,with a relatively low incidence.Radiologically,identification of MSK is sometimes ambiguous when compared to a renal mass.Here,we report a novel renal...Medullary sponge kidney(MSK)is a characteristic renal malformation,with a relatively low incidence.Radiologically,identification of MSK is sometimes ambiguous when compared to a renal mass.Here,we report a novel renal clear cell carcinoma in MSK,and discuss our approach to treatment.We recommended that a preoperative biopsy should be performed,followed by a comprehensive discussion regarding the appropriate perioperative preparations and careful surgical techniques that should be performed for this complex disease.展开更多
An effector-reporter system is a powerful tool used to study cellular signal transduction,but this technique has been traditionally used in protoplasts.A similar system to study cellular signal transduction in fruits ...An effector-reporter system is a powerful tool used to study cellular signal transduction,but this technique has been traditionally used in protoplasts.A similar system to study cellular signal transduction in fruits has not yet been established.In this study,we aimed to establish an effector–reporter system for strawberry fruit,a model nonclimacteric fruit.We first investigated the characteristics of transient gene expression in strawberry fruits and found marked variation in gene expression levels among individual fruits,and this variation has complicated the establishment of a technical system.To overcome this difficulty,we investigated a sampling strategy based on a statistical analysis of the activity pattern of four different reporters(GUS,GFP,FLuc,and RLuc)among individual fruits and combinations of pairs of reporters(GUS/GFP and RLuc/FLuc).Based on an optimized sampling strategy,we finally established a step-by step protocol for the effector/reporter assay.Using FaMYB10 and FaWRKY71 as the effectors and GUS driven by the FaCHS promoter as the reporter,we demonstrated that this effector/reporter system was practical and reliable.This effector/reporter technique will contribute to an in-depth exploration of the signaling mechanism for the regulation of strawberry fruit ripening.展开更多
Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythio...Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels.展开更多
基金This project was supported by Science and technology project of Xiamen Medical College(K2023-08)the National Natural Science Foundation of China(No.82170299 to Shan Hongli,No.82003757 to Lyu Lifang).
文摘Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI.
基金supported by the CAS Project of Young Scientists in Basic Research(YSBR-058)the National Natural Science Foundation of China(22279135)+2 种基金the Outstanding Youth Foundation of Liaoning Province(2023JH3/10200019)the Dalian Science and Technology Innovation Fund(2023JJ11CG004)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(YIICE E411010316)。
文摘Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.
基金National Natural Science Foundation of China General Project(52377160)National Natural Science Foundation of China National Young Talents Project(GYKP010)+1 种基金Shaanxi Provincial Natural Science Program(2023-JC-YB-425)Xi′an Jiaotong University Young Top Talents Program.
文摘Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehensive overview of recent advancements in the plasma-enabled synthesis of life’s building blocks, charting the complex environmental parameters believed to have surrounded life’s inception. This discussion elaborates on the fundamental mechanisms of discharge plasmas and their likely role in fostering conditions necessary for the origin of life on early Earth. We consider a variety of chemical reactions facilitated by plasma, specifically the synthesis of vital organic molecules - amino acids, nucleobases, sugars, and lipids. Further, we delve into the impact of plasmas on prebiotic chemical evolution. We expect this review to open new horizons for future investigations in plasma-related prebiotic chemistry that could offer valuable insights for unraveling the mysteries of life's origin.
基金the financial support from the National Natural Science Foundation of China(Nos.51673199,51972301,51677176)Youth Innovation Promotion Association of CAS(2015148)+2 种基金Youth Innovation Foundation of DICP(ZZBS201615,ZZBS201708)Dalian Outstanding Young Scientific Talent(2018RJ03)National Key Research and Development Project(2019YFA0705600)。
文摘Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolytes due to Li dendrites and instability of the solid electrolyte interphase.Recent research demonstrated that the problem can be alleviated via tetraethoxysilane(TEOS)treated lithium metal to form a silicon oxide layer on the lithium surface,however,its reaction mechanism is controversial.Herein,we deeply explore the reaction mechanism between TEOS and Li and propose:Fresh Li can directly react with TEOS even though no lithium hydroxide exists on the lithium surface,and the participation of water will accelerate the reaction process.Moreover,it was found that the silicon oxide layer can promote the uniform deposition of lithium ions by providing lithiophilic nucleation sites,thereby achieving a long cycle life of Li metal batteries.
文摘Education is one of the most pivotal services in societal development as it cultivates a wide variety of skills, especially numeracy and literacy skills. However, students may have varying masteries of these two aptitudes. Some attribute this to students’ intrinsic efforts while others attribute this to students’ capabilities and affiliated environments. In this work, I explore the numeracy and literacy aptitude patterns of students from various cultures based on a dataset that contains various demographic information, from which I deduced some preliminary trends. After the comparison of numerous machine learning algorithms, the optimal algorithm or combination of a few algorithms predicts students’ performances by classifying students of different backgrounds into various potential outcomes. The results suggest that proper resources and supports are necessary for enhanced learning.
基金supported by the National Natural Science Foundation of China(Grant Nos.62288101 and 62274086)the National Key R&D Program of China(Grant No.2021YFA0718802)the Jiangsu Outstanding Postdoctoral Program。
文摘Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.
基金This study was supported by the National Natural Science Foundation of China(82330011,82170299,81900225)the Scientific Fund Project of Heilongjiang Province(JQ2022H001)the CAMS Innovation Fund for Medical Sciences(CIFMS,2019-I2M-5-078).
文摘Background and Objective:Cardiac fibrosis is a pathological reparative process that follows myocardial infarctionand is associated with compromised cardiac systolic and reduced cardiac compliance.The Wnt signaling pathway is closely implicated in organ fibrosis,and Notum,a highly conserved secreted inhibitor,modulates Wnt signaling.The objective of this study was to explore the role and mechanism of Notum in cardiac fibrosis.Methods:A mouse model of cardiac remodeling was established through left coronary artery ligation surgery,with the addition of Notum injection following myocardial infarction surgery.The protective effect of Notum on myocardial infarction was assessed by evaluating cardiac function,including survival rate,echocardiographic assessment,and cardiac contraction analyses.Inflammatory cell necrosis and infiltration were confirmed through H&E and Masson staining.The expression of fibrosis-related genes andβ-catenin pathway markers was detected using Western blot quantificational RT-PCR(qRT-PCR).Additionally,EdU,wound healing,and immunofluorescence staining analyses were performed to detect the effect of Notum's in transforming growth factor beta-1(TGF-β1)induced myofibroblast transformation.Results:The administration of Notum treatment resulted in enhanced survival rates,improved cardiac function,and decreased necrosis and infiltration of inflammatory cells in mice subjected to left coronary artery ligation.Furthermore,Notum effectively impeded the senescence of cardiac fibroblasts and hindered their pathological transformation into cardiac fibroblasts.Additionally,it significantly reduced collagen production and attenuated the activation of the Wnt/β-catenin pathway.Our preliminary investigations successfully demonstrated the therapeutic potential of Notum in both fibroblasts in vitro and in a mouse model of myocardial infarction-induced cardiac fibrosis in vivo.Conclusion:Notum inhibition of the Wnt/β-catenin signaling pathway and cardiac fibroblast senescence ultimately hampers the onset of cardiac fibrosis.Our findings suggest that Notum could represent a new therapeutic strategy for the treatment of cardiac fibrosis.
文摘Poly(3,4-ethylenedioxythiophene)(PEDOT),heralded as the“king”of conducting polymers,is esteemed in bioelectronics for its mixed electronic and ionic conductivity,mechanical properties compatible with biological tissues,tunable healing ability and stability in diverse environments^([1]).Based on additive manufacturing of three-dimensional structures,PEDOT realizes the implementation in the efficient production of flexible bioelectronics,the construction of intricate electrode-neural implantations,and the development of smart brain-computer-interfaces^([2]).
基金financially supported by the National Natural Science Foundation of China(Grant No.21935003 and 21908217)DICP I201928+1 种基金the China Postdoctoral Science Foundation(No.2019M651158)the CAS Engineering Laboratory for Electrochemical Energy Storage。
文摘In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are generally intermittent and random,hindering their wide application[2,3].To address this problem,there is an urgent need in effective and reliable energy storage device.
基金the financial support from National Natural Science Foundation of China(22078313,21908214 and 21925804)the Dalian High Level Talent Innovation support program(2020RD05)+2 种基金the Dalian Young Star of Science and Technology(2021RQ122)the Free exploring basic research project of Liaoning(2022JH6/100100005)the Youth Innovation Promotion Association CAS(2019182)。
文摘Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage.
基金supported by the National Natural Science Foundation of China(Grant NO.31471851,31672133 and 31872086)the 111 Project(Grant No.B17043).
文摘Strawberry is increasingly used as a model plant for research on fruit growth and development.The transient gene manipulation(TGM)technique is widely used to determine the function of plant genes,including those in strawberry fruits.However,its reliable application for the precise identification of gene function has been difficult owing to the lack of conditional optimization.In this study,we found that successful transient gene manipulation requires optimization,with the vector type,temperature,and fruit developmental stage being three major factors determining success.Notably,we found that transient gene manipulation was feasible only from the large green fruit stage onwards,making it especially suitable for identifying genes involved in strawberry fruit ripening.Furthermore,we established a method called percentage difference of phenotype(PDP),in which the functional effect of a gene could be precisely and efficiently identified in strawberry fruits.This method can be used to estimate the functional effect of a gene as a value from 0 to 100%,such that different genes can be quantitatively compared for their relative abilities to regulate fruit ripening.This study provides a useful tool for accelerating research on the molecular basis of strawberry fruit ripening.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11974331,11674306,and 61590932)the National Key R&D Program(Grant Nos.2016YFA0301700 and 2017YFA0304100)。
文摘We construct a two-dimensional, discrete-time quantum walk, exhibiting non-Hermitian skin effects under openboundary conditions. As a confirmation of the non-Hermitian bulk-boundary correspondence, we show that the emergence of topological edge states is consistent with the Floquet winding number, calculated using a non-Bloch band theory, invoking time-dependent generalized Brillouin zones. Further, the non-Bloch topological invariants associated with quasienergy bands are captured by a non-Hermitian local Chern marker in real space, defined via the local biorthogonal eigenwave functions of a non-unitary Floquet operator. Our work aims to stimulate further studies of non-Hermitian Floquet topological phases where skin effects play a key role.
基金supported by the Key Research and Development Program of Zhejiang Province under Grant nos.2021C05005 and 2021C05007-2the National Natural Science Foundation of China under Grant no.52121002.
文摘Application of liquid metals and electrospun nanofibers offer a promising solution to insufficient resilience and human com-fort of wearable electronics.However,a sustainable manufacturing process is hindered by the low surface tension of liquid metal,and it's poor attachment to the surface of the fabric.This research reveals that tuning the pressure can control the adhesion of semiliquid metal(SLM)on substrates with varying roughness to achieve selective adhesion.Furthermore,a simple and rapid(30 s)fabrication method based on selective adhesion and low mobility of SLM is presented for preparing a multilayered monitoring device capable of measuring human body temperature and ECG signals for 24 h.This device exhibits excellent air permeability of 311.1 g·m^(-2)·h^(-1),water resistance(washing for 120 min).Our novel approach can inspire the development of methods for printing liquid metal circuits on roughness substrates and enable the practical use of waterproof and breathable wearable electronic devices in the future.
基金the financial support from NSFC(21925804,U1808209 and 21908214)CAS Engineering Laboratory for Electrochemical Energy Storage,CAS,STS program.Major scientific and technological innovation project of Shandong(2018YFJH0106)+1 种基金the CAS(DNL201910)Youth Innovation Promotion Association CAS。
文摘A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices.
文摘Medullary sponge kidney(MSK)is a characteristic renal malformation,with a relatively low incidence.Radiologically,identification of MSK is sometimes ambiguous when compared to a renal mass.Here,we report a novel renal clear cell carcinoma in MSK,and discuss our approach to treatment.We recommended that a preoperative biopsy should be performed,followed by a comprehensive discussion regarding the appropriate perioperative preparations and careful surgical techniques that should be performed for this complex disease.
基金the National Key Research and Development Program(SQ2019YFD100078)the National Natural Science Foundation of China(Grants 31672133 and 31872086)+2 种基金the National Key Research and Development Program(2019YFD1000200)the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects(CEFF-PXM2019_014207_000032)the Beijing Municipal Natural Science Foundation(Grant No.6171001).
文摘An effector-reporter system is a powerful tool used to study cellular signal transduction,but this technique has been traditionally used in protoplasts.A similar system to study cellular signal transduction in fruits has not yet been established.In this study,we aimed to establish an effector–reporter system for strawberry fruit,a model nonclimacteric fruit.We first investigated the characteristics of transient gene expression in strawberry fruits and found marked variation in gene expression levels among individual fruits,and this variation has complicated the establishment of a technical system.To overcome this difficulty,we investigated a sampling strategy based on a statistical analysis of the activity pattern of four different reporters(GUS,GFP,FLuc,and RLuc)among individual fruits and combinations of pairs of reporters(GUS/GFP and RLuc/FLuc).Based on an optimized sampling strategy,we finally established a step-by step protocol for the effector/reporter assay.Using FaMYB10 and FaWRKY71 as the effectors and GUS driven by the FaCHS promoter as the reporter,we demonstrated that this effector/reporter system was practical and reliable.This effector/reporter technique will contribute to an in-depth exploration of the signaling mechanism for the regulation of strawberry fruit ripening.
基金National Natural Science Foundation of China (No. 82272120)Natural Science Foundation of Zhejiang Province, China (Nos. LQ20F010011, LY18H180006)+2 种基金Key Research and Development Program of Zhejiang Province, China (No. 2022C03002)supported by MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University (No. 2022MSF**)the open research fund of Guangdong Provincial Key Laboratory of Advanced Biomaterials.
文摘Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels.