A case of heterotopic pancreas in the Third Affiliated Hospital of Inner Mongolia Medical University was recorded and analyzed on the basis of diagnosis,physical examination and treatment.Misdiagnosis of gastrointesti...A case of heterotopic pancreas in the Third Affiliated Hospital of Inner Mongolia Medical University was recorded and analyzed on the basis of diagnosis,physical examination and treatment.Misdiagnosis of gastrointestinal stromal tumor(GIST)is very common since it is a rare disease.So this paper aims to enhance the doctors’awareness of GIST during clinical practice.展开更多
Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel.Up to the present,only a few genes have been characterized affecting the maize embryo/kernel ratio.Here,we id...Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel.Up to the present,only a few genes have been characterized affecting the maize embryo/kernel ratio.Here,we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study(GWAS).The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2(CT2),encoding the heterotrimeric G proteinαsubunit,is significantly associated with the Embryo/Kernel Weight Ratio(EKWR).Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR.The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants,for which EKWR is significantly decreased.Subsequently,the key downstream genes of CT2 are identified by combining the differential expression analysis of the ct2 mutant and quantitative trait transcript analysis in the GWAS population.In addition,the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication.This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio,which could be applied in future maize breeding programs to improve grain yield and nutritional content.展开更多
Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE ...Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE (GOLS), RAFFINOSE SYNTHASE (RS), and STACHYOSE SYNTHASE (STS) are the enzymes responsible for RFO biosynthesis in plants. Interestingly, only raffinose is detected in maize seeds, and a unique maize RS gene (ZmRS) was identified. In this study, we found that two independent mutator (Mu)-interrupted zmrs lines, containing no raffinose but hyperaccumulating galactinol, have significantly reduced seed vigor, compared with null segregant controls. Unlike maize, Arabidopsis thaliana seeds contain several RFOs (raffinose, stachyose, and verbascose). Manipulation of A. thaliana RFO content by overexpressing ZmGOLS2, ZmRS, or AtSTS demonstrated that co-overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, significantly increased the total content of RFOs and enhanced Arabidopsis seed vigor. Surprisingly, while overexpression of ZmRS increased seed raffinose content, its overexpression dramatically decreased seed vigor and reduced the seed amounts of galactinol, stachyose, and verbascose. In contrast, the atrs5 mutant seeds are similar to those of the wild type with regard to seed vigor and RFO content, except for stachyose, which accumulated in atrs5 seeds. Total RFOs, RFO/sucrose ratio, but not absolute individual RFO amounts, positively correlated with A. thaliana seed vigor, to which stachyose and verbascose contribute more than raffinose. Taken together, these re- sults provide new insights into regulatory mechanisms of seed vigor and reveal distinct requirement for RFOs in modulating seed vigor in a monocot and a dicot.展开更多
The plant hormone abscisic acid(ABA)is crucial for plant seed germination and abiotic stress tolerance.However,the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown.In this...The plant hormone abscisic acid(ABA)is crucial for plant seed germination and abiotic stress tolerance.However,the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown.In this study,436 rice accessions were assessed for their sensitivity to ABA during seed germination.The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian(indica)and Geng(japonica)subspecies and between the upland-Geng and lowland-Geng ecotypes.The upland-Geng accessions were most sensitive to ABA.Genome-wide association analyses identified four major quantitative trait loci containing21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene,OsbHLH38,was the most important for ABA sensitivity.Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses.Overexpression of OsbHLH38 increased seedling salt tolerance,while knockout of OsbHLH38 increased sensitivity to salt stress.A salt-responsive transcription factor,OsDREB2A,interacted with OsbHLH38 and was directly regulated by OsbHLH38.Moreover,OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones,transcription factor genes,and many downstream genes with diverse functions,including photosynthesis,redox homeostasis,and abiotic stress responsiveness.These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.展开更多
文摘A case of heterotopic pancreas in the Third Affiliated Hospital of Inner Mongolia Medical University was recorded and analyzed on the basis of diagnosis,physical examination and treatment.Misdiagnosis of gastrointestinal stromal tumor(GIST)is very common since it is a rare disease.So this paper aims to enhance the doctors’awareness of GIST during clinical practice.
基金supported by National Key Research and Development Program of China(2023YFF1000400)National Natural Science Foundation of China(32101693)+2 种基金Key Research and Development Program of Shaanxi(2021ZDLNY01-06)Agricultural Science and Technology Innovation Program of CAAS(CAAS-ZDRW202004)supported by Hatch project(1019088).
文摘Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel.Up to the present,only a few genes have been characterized affecting the maize embryo/kernel ratio.Here,we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study(GWAS).The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2(CT2),encoding the heterotrimeric G proteinαsubunit,is significantly associated with the Embryo/Kernel Weight Ratio(EKWR).Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR.The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants,for which EKWR is significantly decreased.Subsequently,the key downstream genes of CT2 are identified by combining the differential expression analysis of the ct2 mutant and quantitative trait transcript analysis in the GWAS population.In addition,the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication.This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio,which could be applied in future maize breeding programs to improve grain yield and nutritional content.
文摘Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE (GOLS), RAFFINOSE SYNTHASE (RS), and STACHYOSE SYNTHASE (STS) are the enzymes responsible for RFO biosynthesis in plants. Interestingly, only raffinose is detected in maize seeds, and a unique maize RS gene (ZmRS) was identified. In this study, we found that two independent mutator (Mu)-interrupted zmrs lines, containing no raffinose but hyperaccumulating galactinol, have significantly reduced seed vigor, compared with null segregant controls. Unlike maize, Arabidopsis thaliana seeds contain several RFOs (raffinose, stachyose, and verbascose). Manipulation of A. thaliana RFO content by overexpressing ZmGOLS2, ZmRS, or AtSTS demonstrated that co-overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, significantly increased the total content of RFOs and enhanced Arabidopsis seed vigor. Surprisingly, while overexpression of ZmRS increased seed raffinose content, its overexpression dramatically decreased seed vigor and reduced the seed amounts of galactinol, stachyose, and verbascose. In contrast, the atrs5 mutant seeds are similar to those of the wild type with regard to seed vigor and RFO content, except for stachyose, which accumulated in atrs5 seeds. Total RFOs, RFO/sucrose ratio, but not absolute individual RFO amounts, positively correlated with A. thaliana seed vigor, to which stachyose and verbascose contribute more than raffinose. Taken together, these re- sults provide new insights into regulatory mechanisms of seed vigor and reveal distinct requirement for RFOs in modulating seed vigor in a monocot and a dicot.
基金supported by the National Key Research and Development Program of China(2020YFE0202300)the National Natural Science Foundation of China(31971928)+2 种基金the Hainan Yazhou Bay Seed Lab Project(B23CJ0208,B21HJ0223,and B21HJ0508)the CAAS Innovative Team Award(to BYF and WSW)the National High-level Personnel of Special Support Program(to WSW)。
文摘The plant hormone abscisic acid(ABA)is crucial for plant seed germination and abiotic stress tolerance.However,the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown.In this study,436 rice accessions were assessed for their sensitivity to ABA during seed germination.The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian(indica)and Geng(japonica)subspecies and between the upland-Geng and lowland-Geng ecotypes.The upland-Geng accessions were most sensitive to ABA.Genome-wide association analyses identified four major quantitative trait loci containing21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene,OsbHLH38,was the most important for ABA sensitivity.Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses.Overexpression of OsbHLH38 increased seedling salt tolerance,while knockout of OsbHLH38 increased sensitivity to salt stress.A salt-responsive transcription factor,OsDREB2A,interacted with OsbHLH38 and was directly regulated by OsbHLH38.Moreover,OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones,transcription factor genes,and many downstream genes with diverse functions,including photosynthesis,redox homeostasis,and abiotic stress responsiveness.These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.