期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
富氧空位的非晶氧化铜高选择性电催化还原CO_(2)制乙烯 被引量:1
1
作者 韦天然 张书胜 +3 位作者 刘倩 邱园 罗俊 刘熙俊 《物理化学学报》 SCIE CAS CSCD 北大核心 2023年第2期100-108,共9页
过量化石能源的消耗导致大气中的二氧化碳含量不断上升,由此引发包括温室效应在内的环境问题。对此,常温常压下的电催化二氧化碳还原手段为制备高附加值的化工原料和实现碳循环提供了一种很有前景的技术储备。在众多的二氧化碳还原产物... 过量化石能源的消耗导致大气中的二氧化碳含量不断上升,由此引发包括温室效应在内的环境问题。对此,常温常压下的电催化二氧化碳还原手段为制备高附加值的化工原料和实现碳循环提供了一种很有前景的技术储备。在众多的二氧化碳还原产物中,碳氢化合物尤其是乙烯,它作为塑料和其他化工产品的重要原料受到广泛的关注。电催化二氧化碳还原制乙烯工艺不仅可适配于现有的生产设备也可作为取代目前工业化的裂解方法。近年来,研究者们为了开发高效的电催化二氧化碳还原制乙烯催化剂开展了大量的研究。不过值得注意的是,大部分研究集中于铜基材料。尽管目前研究者取得了很多成果,但仍缺少可高选择性产乙烯的二氧化碳还原催化剂。如何设计出可活化二氧化碳分子,同时对*CO和*COH中间物有强吸附能力的催化剂是研究难点。针对此问题,本文中通过真空蒸镀的方法制备出一种富氧空位的非晶氧化铜纳米薄膜催化剂。受益于纳米薄膜的构建和氧空位的引入,该催化剂可快速进行电荷和物质的交换,并利于二氧化碳分子的吸附及优化还原中间产物的亲和力,进而表现出优异的电催化二氧化碳制乙烯的性能。结果表明,在加有0.1 mol·L^(−1)碳酸氢钾溶液的H型电解池中测试中,该催化剂在相对于可逆氢电极电势为−1.3 V的产乙烯法拉第效率可达85%±3%。此外,该催化剂在长达48 h的电催化还原过程中仍可保持高的乙烯选择性。这些指标与已报道的最好的铜基催化剂的性能相当。另外,结构和化学手段表明该催化剂在电解反应中可保持良好的稳定性。进一步,我们测试了该催化剂在膜电极体系的性能,结果表明该催化剂的最大乙烯局部电流密度可达115.4 mA·cm^(−2)(操作电压为−1.95 V),最高法拉第效率可达78%±2%(操作电压为−1.75 V)。理论和实验结果证明该催化剂的高乙烯选择性源于引入的氧空位不仅有利于二氧化碳分子的吸附,而且可增强对*CO和*COH的亲和力。本论文的研究不仅可激发学术界对高乙烯选择性的非晶铜基材料开发,同时在一定程度上提供有关电催化二氧化碳制乙烯的反应机制认识。 展开更多
关键词 二氧化碳固定 二碳产物 电催化 非晶催化剂 铜氧化物
在线阅读 下载PDF
Au nanoclusters anchored on TiO_(2) nanosheets for high-efficiency electroreduction of nitrate to ammonia 被引量:2
2
作者 Miaosen Yang tianran wei +5 位作者 Jia He Qian Liu Ligang Feng Hongyi Li Jun Luo Xijun Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1209-1216,共8页
Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoc... Electrocatalytic nitrate reduction reaction(NO_(3)RR)offers a unique rationale for green NH_(3) synthesis,yet the lack of high-efficiency NO_(3)RR catalysts remains a great challenge.In this work,we show that Au nanoclusters anchored on TiO_(2) nanosheets can efficiently catalyze the conversion of NO_(3)RR-to-NH_(3) under ambient conditions,achieving a maximal Faradic efficiency of 91%,a peak yield rate of 1923μg·h^(-1)·mgcat.-1,and high durability over 10 consecutive cycles,all of which are comparable to the recently reported metrics(including transition metal and noble metal-based catalysts)and exceed those of pristine TiO_(2).Moreover,a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed,which shows a power density of 3.62 mW·cm^(-2) and a yield rate of 452μg·h^(-1)·mgcat.-1.Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO_(3)-species,and reduce the NO_(3)RR-to-NH_(3) barrier,thus leading to an accelerated cathodic reaction.This work highlights the importance of metal clusters for the NH_(3) electrosynthesis and nitrate removal. 展开更多
关键词 NH3 electrosynthesis Zn-nitrate battery Au nanoclusters nitrate reduction reaction(NRR) TiO_(2)nanosheets
原文传递
Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries
3
作者 Lang Zhang Tong Hou +6 位作者 weijia Liu Yeyu Wu tianran wei Junyang Ding Qian Liu Jun Luo Xijun Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI 2024年第9期51-59,共9页
Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well.In this work,a class of dealloyed Ti_(60)Cu_(33)Mn_(7)ribbons with enough nano... Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well.In this work,a class of dealloyed Ti_(60)Cu_(33)Mn_(7)ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH_(3)is fabricated,reaching an excellent Faradaic efficiency of 93.2%at–0.5 V vs reversible hydrogen electrode and a high NH_(3) synthesis rate of 717.4μmol·h^(-1)·mg_(cat).^(-1) at–0.6 V vs reversible hydrogen electrode.The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases.Meanwhile,the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface,such as modifying the electronic structure of the Cu species,optimizing the adsorption energy of N^(*)atoms,decreasing the strength of the NO adsorption,and eliminating the thermodynamic energy barrier,thus improving the NO reduction reaction catalytic performance.Moreover,a Zn-NO battery was fabricated using the catalyst and Zn plates,generating an NH_(3) yield of 129.1µmol·h^(-1)·cm^(-2)while offering a peak power density of 1.45 mW·cm^(-2). 展开更多
关键词 nitric oxide reduction NH_(3)electrosynthesis TiCuMn alloy Mn modulation Zn-NO battery
原文传递
MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia 被引量:5
4
作者 Ge Meng Mengmeng Jin +5 位作者 tianran wei Qian Liu Shusheng Zhang Xianyun Peng Jun Luo Xijun Liu 《Nano Research》 SCIE EI CSCD 2022年第10期8890-8896,共7页
Electrochemical nitric oxide reduction reaction(NORR)to produce ammonia(NH3)under ambient conditions is a promising alternative to the energy and carbon-intensive Haber–Bosch approach,but its performance is still imp... Electrochemical nitric oxide reduction reaction(NORR)to produce ammonia(NH3)under ambient conditions is a promising alternative to the energy and carbon-intensive Haber–Bosch approach,but its performance is still improved.Herein,molybdenum carbides(MoC)nanocrystals confined by nitrogen-doped carbon nanosheets are first designed as an efficient and durable electrocatalyst for catalyzing the reduction of NO to NH3 with maximal Faradaic efficiency of 89%±2%and a yield rate of 1,350±15μg·h^(−1)·cm^(−2) at the applied potential of−0.8 V vs.reversible hydrogen electrode(RHE)as well as high stable activity with negligible current density and NH3 yield rate decays over a 30 h continue the test.Moreover,as a proof-of-concept of Zn–NO battery,it achieves a peak power density of 1.8 mW·cm^(−2) and a large NH3 yield rate of 782±10μg·h^(−1)·cm^(−2),which are comparable to the best-reported results.Theoretical calculations reveal that the MoC(111)has a strong electronic interaction with NO molecules and thus lowering the energy barrier of the potential-determining step and suppressing hydrogen evolution kinetics.This work suggests that Mo-based materials are a powerful platform providing great opportunities to explore highly selective and active catalysts for NH3 production. 展开更多
关键词 ammonia electrosynthesis green route molybdenum carbides(MoC)nanocrystals nitric oxide reduction reaction high selectivity
原文传递
Active-site and interface engineering of cathode materials for aqueous Zn–gas batteries 被引量:2
5
作者 Wenxian Liu Jinxiu Feng +5 位作者 tianran wei Qian Liu Shusheng Zhang Yang Luo Jun Luo Xijun Liu 《Nano Research》 SCIE EI CSCD 2023年第2期2325-2346,共22页
Aqueous rechargeable Zn–gas batteries are regarded as promising energy storage and conversion devices due to their high safety and inherent environmental friendliness.However,the energy efficiency and power density o... Aqueous rechargeable Zn–gas batteries are regarded as promising energy storage and conversion devices due to their high safety and inherent environmental friendliness.However,the energy efficiency and power density of Zn–gas batteries are restricted by the kinetically sluggish cathode reactions,such as oxygen evolution reaction(OER)during charging and oxygen reduction reaction(ORR)/carbon dioxide reduction reaction(CO_(2)RR)/nitrogen reduction reaction(NRR)/nitric oxide reduction reaction(NORR)during discharge.In this review,battery configurations and fundamental reactions in Zn–gas batteries are first introduced,including Zn–air,Zn-CO_(2),Zn-N_(2),and Zn-NO batteries.Afterward,recent advances in active site engineering for enhancing the intrinsic catalytic activities of cathode catalysts are summarized.Subsequently,the structure and surface regulation strategies of cathode materials for optimizing the three-phase interface and improving the performance of Zn–gas batteries are discussed.Finally,some personal perspectives for the future development of Zn–gas batteries are presented. 展开更多
关键词 Zn–gas batteries electrocatalysis single-atom catalysts chemical doping heterostructure INTERFACE
原文传递
High-efficiency electrocatalytic NO reduction to NH_(3) by nanoporous VN 被引量:7
6
作者 Defeng Qi Fang Lv +9 位作者 tianran wei Mengmeng Jin Ge Meng Shusheng Zhang Qian Liu Wenxian Liu Dui Ma Mohamed SHamdy Jun Luo Xijun Liu 《Nano Research Energy》 2022年第2期201-207,共7页
Electrocatalytic NO reduction reaction to generate NH_(3)under ambient conditions offers an attractive alternative to the energy-extensive Haber-Bosch route;however,the challenge still lies in the development of cost-... Electrocatalytic NO reduction reaction to generate NH_(3)under ambient conditions offers an attractive alternative to the energy-extensive Haber-Bosch route;however,the challenge still lies in the development of cost-effective and high-performance electrocatalysts.Herein,nanoporous VN film is first designed as a highly selective and stable electrocatalyst for catalyzing reduction of NO to NH_(3)with a maximal Faradaic efficiency of 85%and a peak yield rate of 1.05×10^(-7)mol·cm^(-2)·s^(-1)(corresponding to 5,140.8mg·h^(-1)·mg_(cat).^(-1))at-0.6 V vs.reversible hydrogen electrode in acid medium.Meanwhile,this catalyst maintains an excellent activity with negligible current density and NH_(3)yield rate decays over 40 h.Moreover,as a proof-of-concept of Zn-NO battery,it delivers a high power density of 2.0 mW·cm^(-2)and a large NH_(3)yield rate of 0.22×10^(-7)mol·cm^(-2)·s^(-1)(corresponding to 1,077.1mg·h^(-1)·mg_(cat).^(-1)),both of which are comparable to the best-reported results.Theoretical analyses confirm that the VN surface favors the activation and hydrogenation of NO by suppressing the hydrogen evolution.This work highlights that the electrochemical NO reduction is an eco-friendly and energy-efficient strategy to produce NH_(3). 展开更多
关键词 NH_(3)electrosynthesis green route nanoporous VN NO reduction reaction high-performance
原文传递
Enhanced thermoelectric performance of two dimensional MS2(M=Mo,W)through phase engineering 被引量:2
7
作者 Bin Ouyang Shunda Chen +3 位作者 Yuhang Jing tianran wei Shiyun Xiong Davide Donadio 《Journal of Materiomics》 SCIE EI 2018年第4期329-337,共9页
The potential application of monolayer MS2(M?Mo,W)as thermoelectric material has been widely studied since the first report of successful fabrication.However,their performances are hindered by the considerable band ga... The potential application of monolayer MS2(M?Mo,W)as thermoelectric material has been widely studied since the first report of successful fabrication.However,their performances are hindered by the considerable band gap and the large lattice thermal conductivity in the pristine 2H phase.Recent discoveries of polymorphism in MS2s provide new opportunities for materials engineering.In this work,phonon and electron transport properties of both 2H and 1T0 phases were investigated by first-principle calculations.It is found that upon the phase transition from 2H to 1T0 in MS2,the electron transport is greatly enhanced,while the lattice thermal conductivity is reduced by several times.These features lead to a significant enhancement of power factor by one order of magnitude in MoS2 and by three times in WS2.Meanwhile,the figure of merit can reach up to 0.33 for 1T0eMoS2 and 0.68 for 1T0eWS2 at low temperature.These findings indicate that monolayer MS2 in the 1T0 phase can be promising materials for thermoelectric devices application.Meanwhile,this work demonstrates that phase engineering techniques can bring in one important control parameter in materials design. 展开更多
关键词 Phase engineering THERMOELECTRIC Transition metal dichalcogenides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部