The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star forma...The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy.This process leads to fragmentation of the cloud and to its subsequent compression and can,eventually,initiate the gravitational collapse of a stable molecular cloud.It is,however,difficult to study such systems in detail using conventional techniques(numerical simulations and astronomical observations),since complex interactions of flows occur.In this paper,we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves,as an analog of supernova remnants interacting with a molecular cloud.The formation of a compression wave is observed in the foam ball,indicating the importance of such experiments for understanding how star formation is triggered by external agents.展开更多
In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then re...In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments.展开更多
A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experi...A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2 D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target,a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities.展开更多
基金the support of Investissements d’Avenir of LabEx PALM(Grant No.ANR-10-LABX-0039-PALM)the Ministry of Science and Higher Education of the Russian Federation(Agreement with Joint Institute for High Temperatures RAS No.075-15-2020-785)G.G.acknowledges support from the UK EPSRC(Grant Nos.EP/M022331/1 and EP/N014472/1)。
文摘The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy.This process leads to fragmentation of the cloud and to its subsequent compression and can,eventually,initiate the gravitational collapse of a stable molecular cloud.It is,however,difficult to study such systems in detail using conventional techniques(numerical simulations and astronomical observations),since complex interactions of flows occur.In this paper,we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves,as an analog of supernova remnants interacting with a molecular cloud.The formation of a compression wave is observed in the foam ball,indicating the importance of such experiments for understanding how star formation is triggered by external agents.
基金supported by the Scientific Council of the Observatoire de Parisby COST(European COoperation in Science and Technology),action MP1208,with a Short-Term Scientific Mission
文摘In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments.
基金supported by the‘Programme National de Physique Stellaire’(PNPS)of CNRS/INSU,Francesupported by ANR Blanc grant No.12-BS09-025-01 SILAMPALABEX Plas@Par grant No.11-IDEX-0004-02 from theFrench agency ANR
文摘A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2 D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target,a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities.