期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Leveraging ROTI map derived from Indonesian GNSS receiver network for advancing study of Equatorial Plasma Bubble in Southeast/East Asia 被引量:1
1
作者 Prayitno Abadi Ihsan N.Muafiry +8 位作者 teguh n.pratama Angga Y.Putra Suraina Gatot H.Pramono Sidik T.Wibowo Febrylian F.Chabibi Umar A.Ahmad Wildan P.Tresna Asnawi 《Earth and Planetary Physics》 EI CAS 2025年第1期101-116,共16页
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa... This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research. 展开更多
关键词 Equatorial Plasma Bubble(EPB) GNSS receivers’network Indonesia Continuously Operating Reference Station(Ina-CORS) ionospheric map Rate of TEC change index(ROTI)map
在线阅读 下载PDF
3D tomographic analysis of equatorial plasma bubble using GNSS-TEC data from Indonesian GNSS Network
2
作者 Ihsan Naufal Muafiry Prayitno Abadi +5 位作者 teguh n.pratama Dyah R.Martiningrum Sri Ekawati Yuandhika GWismaya Febrylian FChabibi Gatot HPramono 《Earth and Planetary Physics》 EI CAS 2025年第1期127-136,共10页
Equatorial Plasma Bubbles(EPBs)are ionospheric irregularities that take place near the magnetic equator.EPBs most commonly occur after sunset during the equinox months,although they can also be observed during other s... Equatorial Plasma Bubbles(EPBs)are ionospheric irregularities that take place near the magnetic equator.EPBs most commonly occur after sunset during the equinox months,although they can also be observed during other seasons.The phenomenon significantly disrupts radio wave signals essential to communication and navigation systems.The national network of Global Navigation Satellite System(GNSS)receivers in Indonesia(>30°longitudinal range)provides an opportunity for detailed EPB studies.To explore this,we conducted preliminary 3D tomography of total electron content(TEC)data captured by GNSS receivers following a geomagnetic storm on December 3,2023,when at least four EPB clusters occurred in the Southeast Asian sector.TEC and extracted TEC depletion with a 120-minute running average were then used as inputs for a 3D tomography program.Their 2D spatial distribution consistently captured the four EPB clusters over time.These tomography results were validated through a classical checkerboard test and comparisons with other ionospheric data sources,such as the Global Ionospheric Map(GIM)and International Reference Ionosphere(IRI)profile.Validation of the results demonstrates the capability of the Indonesian GNSS network to measure peak ionospheric density.These findings highlight the potential for future three-dimensional research of plasma bubbles in low-latitude regions using existing GNSS networks,with extensive longitudinal coverage. 展开更多
关键词 EPB Indonesian GNSS Network 3D tomography
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部