Two types of lanthanide coordination polymers, namely, [Ln(PA)(NO3)(DMA)3]n (Ln=Gd (1), Dy (2), Eu (3), Tb (4)) (type I), and {[Ln2(PA)3(DMF)4]'2DMF} (Ln=Eu (5), Tb (6)) (type II) (PA=P...Two types of lanthanide coordination polymers, namely, [Ln(PA)(NO3)(DMA)3]n (Ln=Gd (1), Dy (2), Eu (3), Tb (4)) (type I), and {[Ln2(PA)3(DMF)4]'2DMF} (Ln=Eu (5), Tb (6)) (type II) (PA=Pamoic acid, DMA=dimethylacetamide, DMF=N,N-dimethylformamide), have been synthesized by the reaction of Ln(NO3)a-6H20 with pamoic acid through layer diffusion method. These complexes were characterized by single crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis (TGA), fluorescence and magnetic measurements. Solvents and lanthanide atoms in the reaction play an important role in controlling different structures. Type I demonstrated 1-D linear chain structure connected by Ln atoms and PA ligands. Type II exhibited non-interpenetrating 3-D 6-connected 43612 nets based on binuclear [Ln2(CO2)6(DMF)4] cores. Magnetic properties of complexes 1-4 were investigated in details. Complex 1 shows significant magnetocaloric effect with -△Sm=20.37 J kg^-1 K^-1 at 3.0 K and 7 T. Complex 2 exhibits slow relaxation of the magnetization. Complexes 3-6 exhibit both ligand- and metal-centered fluorescent properties. Complex 6 demonstrates fluorescent sensing of DMF and Cu^2+ ion.展开更多
The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastew...The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastewaters.Herein,a new two-dimensional(2D)Cd-based metal−organic framework(Cd-MOF,namely LCU-111)and its mixed matrix membranes(MMMs)is sifted as luminescence sensors for efficient monitoring antibiotic nitrofurazone(NFZ)in various aqueous systems and applied as visible fingerprint identifying.The LCU-111 has good selectivity,sensibility,reproducibility and anti-interference for luminescent quenching NFZ with low detection limits(LODs)of 0.4567,0.3649 and 0.8071 ppm in aqueous solution,HEPES biological buffer,and real urban Tuhai River water,respectively.Interestingly,the luminescent test papers and MMMs allow the NFZ sensing easier and more rapid by naked eyes,only with a low LOD of 0.8117 ppm for MMMs sensor.Notably,by combining multiple experiments with density functional theory(DFT)calculations,the photo-induced electron transfer(PET)quenching mechanism is further elucidated.More importantly,potential practical applications of LCU-111 for latent fingerprint visualization provide lifelike evidences for effective identification of individuals,which can be applied in criminal investigation.展开更多
基金supported by the National Natural Science Foundation of China(21571092,21403102)the Natural Science Foundation of Shandong Province(ZR2012BQ023)the University Scientific Research Development Plan of the Education Department of Shandong Province(J14LC10)
文摘Two types of lanthanide coordination polymers, namely, [Ln(PA)(NO3)(DMA)3]n (Ln=Gd (1), Dy (2), Eu (3), Tb (4)) (type I), and {[Ln2(PA)3(DMF)4]'2DMF} (Ln=Eu (5), Tb (6)) (type II) (PA=Pamoic acid, DMA=dimethylacetamide, DMF=N,N-dimethylformamide), have been synthesized by the reaction of Ln(NO3)a-6H20 with pamoic acid through layer diffusion method. These complexes were characterized by single crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis (TGA), fluorescence and magnetic measurements. Solvents and lanthanide atoms in the reaction play an important role in controlling different structures. Type I demonstrated 1-D linear chain structure connected by Ln atoms and PA ligands. Type II exhibited non-interpenetrating 3-D 6-connected 43612 nets based on binuclear [Ln2(CO2)6(DMF)4] cores. Magnetic properties of complexes 1-4 were investigated in details. Complex 1 shows significant magnetocaloric effect with -△Sm=20.37 J kg^-1 K^-1 at 3.0 K and 7 T. Complex 2 exhibits slow relaxation of the magnetization. Complexes 3-6 exhibit both ligand- and metal-centered fluorescent properties. Complex 6 demonstrates fluorescent sensing of DMF and Cu^2+ ion.
基金supported by the National Natural Science Foundation of China(Nos.21771095 and 22061019)the Natural Science Foundation of Shandong Province(Nos.ZR2021MB114 and ZR2021MB073)the Youth Innovation Team of Shandong Colleges and Universities(No.2019KJC027).
文摘The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastewaters.Herein,a new two-dimensional(2D)Cd-based metal−organic framework(Cd-MOF,namely LCU-111)and its mixed matrix membranes(MMMs)is sifted as luminescence sensors for efficient monitoring antibiotic nitrofurazone(NFZ)in various aqueous systems and applied as visible fingerprint identifying.The LCU-111 has good selectivity,sensibility,reproducibility and anti-interference for luminescent quenching NFZ with low detection limits(LODs)of 0.4567,0.3649 and 0.8071 ppm in aqueous solution,HEPES biological buffer,and real urban Tuhai River water,respectively.Interestingly,the luminescent test papers and MMMs allow the NFZ sensing easier and more rapid by naked eyes,only with a low LOD of 0.8117 ppm for MMMs sensor.Notably,by combining multiple experiments with density functional theory(DFT)calculations,the photo-induced electron transfer(PET)quenching mechanism is further elucidated.More importantly,potential practical applications of LCU-111 for latent fingerprint visualization provide lifelike evidences for effective identification of individuals,which can be applied in criminal investigation.