Metal-organic frameworks(MOFs)functionalized with open metal sites(OMSs)have received widespread attention in various applications due to their fascinating electronic properties and unique interactions with vip mole...Metal-organic frameworks(MOFs)functionalized with open metal sites(OMSs)have received widespread attention in various applications due to their fascinating electronic properties and unique interactions with vip molecules.However,rational tailoring of the coordination environment of metal nodes dur-ing the synthesis of MOFs remains a great challenge due to their tendency of saturated coordination with linkers.Herein,we reported the construction of three new MOFs featuring unsaturated Cu(Ⅱ)sites,namely[Cu(HCOO)(pzta)]_(n)(HL-1),{[Cu(PTA)0.5(pzta)(H_(2)O)]·2H_(2)O}_(n)(HL-2)and[Cu(NA)0.5(pzta)]_(n)(HL-3)(Hpzta=3-pyrazinyl-1,2,4-triazole;PTA=terephthalic acid;NA=1,4-naphthalene dicarboxylic acid),based on the mixed-linker strategy via specific selection of versatile Hpzta ligand and carboxylate ligands.Re-markably,the obtained MOFs exhibited excellent activity and good recyclability for the catalytic reduction of nitroaromatics under mild conditions(25℃and 1 atm).In particular,the complete conversion of 4-nitrophenol(4-NP)took only 30 s on HL-2,reaching a record-high TOF value compared with previously reported metal catalysts.The combined experimental and theoretical studies on HL-2 revealed that the open Cu site with positive-charged nature could improve the adsorption and subsequent electron trans-port between the substrates,and was responsible for the outstanding performance.This work shined lights on the further enhancement of performance for MOFs through rational OMSs construction.展开更多
The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastew...The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastewaters.Herein,a new two-dimensional(2D)Cd-based metal−organic framework(Cd-MOF,namely LCU-111)and its mixed matrix membranes(MMMs)is sifted as luminescence sensors for efficient monitoring antibiotic nitrofurazone(NFZ)in various aqueous systems and applied as visible fingerprint identifying.The LCU-111 has good selectivity,sensibility,reproducibility and anti-interference for luminescent quenching NFZ with low detection limits(LODs)of 0.4567,0.3649 and 0.8071 ppm in aqueous solution,HEPES biological buffer,and real urban Tuhai River water,respectively.Interestingly,the luminescent test papers and MMMs allow the NFZ sensing easier and more rapid by naked eyes,only with a low LOD of 0.8117 ppm for MMMs sensor.Notably,by combining multiple experiments with density functional theory(DFT)calculations,the photo-induced electron transfer(PET)quenching mechanism is further elucidated.More importantly,potential practical applications of LCU-111 for latent fingerprint visualization provide lifelike evidences for effective identification of individuals,which can be applied in criminal investigation.展开更多
A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has b...A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has been synthesized.The adjacent Zn^(II)ions are linked through two BBIP ligands to form a[Zn_(2)(BBIP)_(2)]secondary building unit(SBU).The neighbouring SBUs are further connected by NDC^(2-)withμ2-η^(1):η^(1)andμ2-η^(1):η^(1):η^(1)bridging modes to form a two-dimensional(2D)framework.Topological analysis shows that JXUST-5 could be simplified as an uninodal fes topology with a point symbol of{4.8^(2)}.Furthermore,the 2D framework net could be extended through C-H···πinteraction to form the three-dimensional supramolecular structure.Luminescent experiments suggest that JXUST-5 could selectively and sensitively recognize Al^(3+)and Ga^(3+)through fluorescence enhancement effect along with a relatively large red shift.The detection limits for Al^(3+)and Ga^(3+)are 0.17 and 0.69 ppm,respectively.Interestingly,the sensing process for both Al^(3+)and Ga^(3+)could be directly observed with naked eyes under 365 nm UV lamp.Notably,JXUST-5 could be recycled at least five times as a fluorescent sensor toward Al^(3+)and Ga^(3+),which is the second example of turn-on MOF based fluorescent sensor toward Ga^(3+).展开更多
Synthetic conditions and ligands are the key structural defining factors of metal-organic frameworks(MOFs).Therefore,reasonable optimization of these aspects is considered to be an effective means for designing materi...Synthetic conditions and ligands are the key structural defining factors of metal-organic frameworks(MOFs).Therefore,reasonable optimization of these aspects is considered to be an effective means for designing materials with novel structures and target functions.Herein,two novel Co(Ⅱ)-based MOFs,namely[Co(HL)(dibp)]_(n)(HL-8) and{[Co_(2)(L)(OH)(dibp)]·DMA}_n(HL-9)(H_(3)L=2',6'-dimethyl-[1,1'-biphenyl]-3,4',5-tricarboxylic acid;dibp=4,4'-di(1H-imidazol-1-yl)-1,1-biphenyl]),have been hydrothermally synthesized and structurally characterized.HL-8 crystallizes in the orthorhombic system (Pna2_(1)) with a grid layer structure,while HL-9 crystallizes in the monoclinic P2_(1)/n space group assembled through Co_(4)(OH)_(2)clusters with organic ligands.Remarkably,benefiting from the finite cage-like structure,HL-9 exhibited enhanced performance in carbon dioxide(CO_(2)) adsorption/catalytic transformation and excellent size selectivity during dye molecular adsorption process.展开更多
Two isostructu ral Ni(Ⅱ)/Co(Ⅱ)-based metal-organic frameworks(MOFs),namely {[M_(3)(L)_(2)(bpb)_(3)(H_(2) O)_(4)]·2 DMF·2 H_(2)O}_(n) [M=Ni(HL-5,HL is short for Hui-Ling Liu);M=Co(HL-6);H_(3) L=2',6'...Two isostructu ral Ni(Ⅱ)/Co(Ⅱ)-based metal-organic frameworks(MOFs),namely {[M_(3)(L)_(2)(bpb)_(3)(H_(2) O)_(4)]·2 DMF·2 H_(2)O}_(n) [M=Ni(HL-5,HL is short for Hui-Ling Liu);M=Co(HL-6);H_(3) L=2',6'-dimethyl-[1,1'-biphenyl]-3,4',5-tricarboxylic acid;bpb=1,4-bis(pyrid-4-yl)benzene],have been hydrothermally synthesized and structu rally characterized.Both HL-5 and HL-6,which have the same three-interpenetrated3 D pillared-layer framework with sqc306 type topology,present good selective methyl orange(MO)adsorption over rhodamine B(RhB).Moreover,the catalytic CO_(2) cycloaddition properties with epoxides of the two MOFs have also been studied at ambient pressure and temperature.展开更多
Two new hydrostable two-dimensional(2 D) uranyl coordination complexes [(UO_(2))_(5)(μ_(3)-O)_(2)(nbca)_(2)].7 H_(2)O(1) and [(UO_(2))_(3)(nbca)_(2)(H_(2)O)_(3)]·2 H_(2)O(2)(H_(3) nbca=5-nitro-1,2,3-benzenetrica...Two new hydrostable two-dimensional(2 D) uranyl coordination complexes [(UO_(2))_(5)(μ_(3)-O)_(2)(nbca)_(2)].7 H_(2)O(1) and [(UO_(2))_(3)(nbca)_(2)(H_(2)O)_(3)]·2 H_(2)O(2)(H_(3) nbca=5-nitro-1,2,3-benzenetricarboxylic acid) were hydrothermal synthesized.Single-crystal structural refinements reveal that both of the two complexes were formed by the packing of 2D uranyl coordination sheets via the hydrogen bonds.The nbca ligand coordinating to the uranyl polyhedron centers constructed the 2D sheets.There are UO8 hexagonal bipyramids and UO7 pentagonal bipyramids in 1 while only U07 pentagonal bipyramids in 2.Photocatalytic degradation of rhodamine B(RhB) in aqueous solution was studied.Complex 2 possesses better performance than 1 with 96.2 % of the RhB was degraded in only 60 min.Mechanism studies reveal that the dissolved oxygens are essential to the RhB degradation.The photocurrent density of 2 is more stable than that of 1,which indicating the stronger ability to separate photoexcited electrons and hole pairs of 2.展开更多
Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(...Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(CH_(3))_(2)NH_(2)][Zn_(3)(bbip)(BTDI)1.5(OH)]·DMF·MeOH·3H_(2)O}n(JXUST-13, bbip = 2,6-bis(benzimidazol-1-yl)pyridine and H_(4)BTDI = 5,5-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid)with new 4,4,8-connceted topology has been successfully synthesized and structurally characterized. Importantly, JXUST-13 could recognize H_(2)PO_(4)-and acetylacetone(Acac) by obvious fluorescence blue shift and slight enhancement with the detection limits of 2.70 μmol/L and 0.21 mmol/L, respectively. In addition, JXUST-13 exhibits relatively good thermal stability, chemical stabilities as well as reusability, and the analytes could be distinguished by naked eye and fluorescence test paper. Remarkably, JXUST-13 is the first dual-responsive MOF sensor based on fluorescence blue shift for the detection of H_(2)PO_(4)-and Acac with good selectivity in a handy, economic, and environmentally friendly manner.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21902022,81903501,21601028)Qingchuang Science and Technology Plan of Shandong Province(No.2021KJ054)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2018LB018,ZR2019QB026,ZR2022QB058,ZR2020KB014)Scientific Research Foundation of Dezhou University(Nos.30101905,30102708,30102701).
文摘Metal-organic frameworks(MOFs)functionalized with open metal sites(OMSs)have received widespread attention in various applications due to their fascinating electronic properties and unique interactions with vip molecules.However,rational tailoring of the coordination environment of metal nodes dur-ing the synthesis of MOFs remains a great challenge due to their tendency of saturated coordination with linkers.Herein,we reported the construction of three new MOFs featuring unsaturated Cu(Ⅱ)sites,namely[Cu(HCOO)(pzta)]_(n)(HL-1),{[Cu(PTA)0.5(pzta)(H_(2)O)]·2H_(2)O}_(n)(HL-2)and[Cu(NA)0.5(pzta)]_(n)(HL-3)(Hpzta=3-pyrazinyl-1,2,4-triazole;PTA=terephthalic acid;NA=1,4-naphthalene dicarboxylic acid),based on the mixed-linker strategy via specific selection of versatile Hpzta ligand and carboxylate ligands.Re-markably,the obtained MOFs exhibited excellent activity and good recyclability for the catalytic reduction of nitroaromatics under mild conditions(25℃and 1 atm).In particular,the complete conversion of 4-nitrophenol(4-NP)took only 30 s on HL-2,reaching a record-high TOF value compared with previously reported metal catalysts.The combined experimental and theoretical studies on HL-2 revealed that the open Cu site with positive-charged nature could improve the adsorption and subsequent electron trans-port between the substrates,and was responsible for the outstanding performance.This work shined lights on the further enhancement of performance for MOFs through rational OMSs construction.
基金supported by the National Natural Science Foundation of China(Nos.21771095 and 22061019)the Natural Science Foundation of Shandong Province(Nos.ZR2021MB114 and ZR2021MB073)the Youth Innovation Team of Shandong Colleges and Universities(No.2019KJC027).
文摘The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastewaters.Herein,a new two-dimensional(2D)Cd-based metal−organic framework(Cd-MOF,namely LCU-111)and its mixed matrix membranes(MMMs)is sifted as luminescence sensors for efficient monitoring antibiotic nitrofurazone(NFZ)in various aqueous systems and applied as visible fingerprint identifying.The LCU-111 has good selectivity,sensibility,reproducibility and anti-interference for luminescent quenching NFZ with low detection limits(LODs)of 0.4567,0.3649 and 0.8071 ppm in aqueous solution,HEPES biological buffer,and real urban Tuhai River water,respectively.Interestingly,the luminescent test papers and MMMs allow the NFZ sensing easier and more rapid by naked eyes,only with a low LOD of 0.8117 ppm for MMMs sensor.Notably,by combining multiple experiments with density functional theory(DFT)calculations,the photo-induced electron transfer(PET)quenching mechanism is further elucidated.More importantly,potential practical applications of LCU-111 for latent fingerprint visualization provide lifelike evidences for effective identification of individuals,which can be applied in criminal investigation.
基金supported from the National Natural Science Foundation of China(Nos.22061019,21761012 and 21861018)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB203001,20202ACBL213001,20192ACBL20013 and 20182BCB22010)+1 种基金the Youth Jinggang Scholars Program in Jiangxi Province(No.QNJG2019053)the Two Thousand Talents Program in Jiangxi Province(No.jxsq2019201068)。
文摘A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has been synthesized.The adjacent Zn^(II)ions are linked through two BBIP ligands to form a[Zn_(2)(BBIP)_(2)]secondary building unit(SBU).The neighbouring SBUs are further connected by NDC^(2-)withμ2-η^(1):η^(1)andμ2-η^(1):η^(1):η^(1)bridging modes to form a two-dimensional(2D)framework.Topological analysis shows that JXUST-5 could be simplified as an uninodal fes topology with a point symbol of{4.8^(2)}.Furthermore,the 2D framework net could be extended through C-H···πinteraction to form the three-dimensional supramolecular structure.Luminescent experiments suggest that JXUST-5 could selectively and sensitively recognize Al^(3+)and Ga^(3+)through fluorescence enhancement effect along with a relatively large red shift.The detection limits for Al^(3+)and Ga^(3+)are 0.17 and 0.69 ppm,respectively.Interestingly,the sensing process for both Al^(3+)and Ga^(3+)could be directly observed with naked eyes under 365 nm UV lamp.Notably,JXUST-5 could be recycled at least five times as a fluorescent sensor toward Al^(3+)and Ga^(3+),which is the second example of turn-on MOF based fluorescent sensor toward Ga^(3+).
基金supported by the National Natural Science Foundation of China(Nos.21902022,21601028,81903501 and 22061019)Qingchuang Science and Technology Plan of Shandong Province(No.2021KJ054)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2018LB018,ZR2019QB026 and ZR2020KB014)Scientific Research Foundation of Dezhou University(Nos.30101905,30102708 and 30102701)。
文摘Synthetic conditions and ligands are the key structural defining factors of metal-organic frameworks(MOFs).Therefore,reasonable optimization of these aspects is considered to be an effective means for designing materials with novel structures and target functions.Herein,two novel Co(Ⅱ)-based MOFs,namely[Co(HL)(dibp)]_(n)(HL-8) and{[Co_(2)(L)(OH)(dibp)]·DMA}_n(HL-9)(H_(3)L=2',6'-dimethyl-[1,1'-biphenyl]-3,4',5-tricarboxylic acid;dibp=4,4'-di(1H-imidazol-1-yl)-1,1-biphenyl]),have been hydrothermally synthesized and structurally characterized.HL-8 crystallizes in the orthorhombic system (Pna2_(1)) with a grid layer structure,while HL-9 crystallizes in the monoclinic P2_(1)/n space group assembled through Co_(4)(OH)_(2)clusters with organic ligands.Remarkably,benefiting from the finite cage-like structure,HL-9 exhibited enhanced performance in carbon dioxide(CO_(2)) adsorption/catalytic transformation and excellent size selectivity during dye molecular adsorption process.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.21601028,21902022 and 21371028)the NSF of Shandong Province(Nos.ZR2019QB026,ZR2018LB018,ZR2016BM26 and ZR2016BL04)。
文摘Two isostructu ral Ni(Ⅱ)/Co(Ⅱ)-based metal-organic frameworks(MOFs),namely {[M_(3)(L)_(2)(bpb)_(3)(H_(2) O)_(4)]·2 DMF·2 H_(2)O}_(n) [M=Ni(HL-5,HL is short for Hui-Ling Liu);M=Co(HL-6);H_(3) L=2',6'-dimethyl-[1,1'-biphenyl]-3,4',5-tricarboxylic acid;bpb=1,4-bis(pyrid-4-yl)benzene],have been hydrothermally synthesized and structu rally characterized.Both HL-5 and HL-6,which have the same three-interpenetrated3 D pillared-layer framework with sqc306 type topology,present good selective methyl orange(MO)adsorption over rhodamine B(RhB).Moreover,the catalytic CO_(2) cycloaddition properties with epoxides of the two MOFs have also been studied at ambient pressure and temperature.
基金the support of National Science Foundations of China (No.21461001)the Project of Jiangxi Provincial Department of Education (Nos.GJJ170436 and GJJ180367)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.19JKB150007)the Doctoral Scientific Research Foundation of East China University of Technology (No. DHBK2019143)。
文摘Two new hydrostable two-dimensional(2 D) uranyl coordination complexes [(UO_(2))_(5)(μ_(3)-O)_(2)(nbca)_(2)].7 H_(2)O(1) and [(UO_(2))_(3)(nbca)_(2)(H_(2)O)_(3)]·2 H_(2)O(2)(H_(3) nbca=5-nitro-1,2,3-benzenetricarboxylic acid) were hydrothermal synthesized.Single-crystal structural refinements reveal that both of the two complexes were formed by the packing of 2D uranyl coordination sheets via the hydrogen bonds.The nbca ligand coordinating to the uranyl polyhedron centers constructed the 2D sheets.There are UO8 hexagonal bipyramids and UO7 pentagonal bipyramids in 1 while only U07 pentagonal bipyramids in 2.Photocatalytic degradation of rhodamine B(RhB) in aqueous solution was studied.Complex 2 possesses better performance than 1 with 96.2 % of the RhB was degraded in only 60 min.Mechanism studies reveal that the dissolved oxygens are essential to the RhB degradation.The photocurrent density of 2 is more stable than that of 1,which indicating the stronger ability to separate photoexcited electrons and hole pairs of 2.
基金supported by the National Natural Science Foundation of China (Nos. 22061019, 21861018, 22161019 and 12174172)the NSF of Jiangxi Province (No. 20202ACBL213001)+4 种基金Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(No. 20212BCD42018)Fujian Key Laboratory of Functional Marine Sensing Materials,Minjiang University (No. MJUKF-FMSM202010)the Youth Jinggang Scholars Program in Jiangxi Province (No.QNJG2019053)the Two Thousand Program in Jiangxi Province (No.jxsq2019201068)the Special Foundation for Postgraduate Innovation in Jiangxi Province (No. YC_(2)020-B155)。
文摘Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(CH_(3))_(2)NH_(2)][Zn_(3)(bbip)(BTDI)1.5(OH)]·DMF·MeOH·3H_(2)O}n(JXUST-13, bbip = 2,6-bis(benzimidazol-1-yl)pyridine and H_(4)BTDI = 5,5-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid)with new 4,4,8-connceted topology has been successfully synthesized and structurally characterized. Importantly, JXUST-13 could recognize H_(2)PO_(4)-and acetylacetone(Acac) by obvious fluorescence blue shift and slight enhancement with the detection limits of 2.70 μmol/L and 0.21 mmol/L, respectively. In addition, JXUST-13 exhibits relatively good thermal stability, chemical stabilities as well as reusability, and the analytes could be distinguished by naked eye and fluorescence test paper. Remarkably, JXUST-13 is the first dual-responsive MOF sensor based on fluorescence blue shift for the detection of H_(2)PO_(4)-and Acac with good selectivity in a handy, economic, and environmentally friendly manner.