Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neur...Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies.展开更多
P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati...P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs.展开更多
Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA...Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA)has been used to distinguish gE-deleted vaccine-immunized pigs from wild-type virus-infected pigs to eradicate PR in some countries.Nanobody has the advantages of small size and easy genetic engineering and has been a promising diagnostic reagent.However,there were few reports about developing nanobody-based ELISA for detecting anti-PRV-gE antibodies.In the present study,the recombinant PRV-gE was expressed with a bacterial system and used to immunize the Bactrian camel.Then,two nanobodies against PRV-gE were screened from the immunized camel by phage display technique.Subsequently,two nanobody-HRP fusion proteins were expressed with HEK293T cells.The PRV-gE-Nb36-HRP fusion protein was selected as the probe for developing the blocking ELISA(bELISA)to detect anti-PRV-gE antibodies.Through optimizing the conditions of bELISA,the amount of coated antigen was 200 ng per well,and dilutions of the fusion protein and tested pig sera were separately 1:320 and 1:5.The cut-off value of bELISA was 24.20%,and the sensitivity and specificity were 96.43 and 92.63%,respectively.By detecting 233 clinical pig sera with the developed bELISA and a commercial kit,the results showed that the coincidence rate of two assays was 93.99%.Additionallly,epitope mapping showed that PRV-gE-Nb36 recognized a conserved conformational epitope in different reference PRV strains.Simple,great stability and low-cost nanobody-based bELISA for detecting anti-PRV-gE antibodies were developed.The bELISA could be used for monitoring and eradicating PR.展开更多
The Li-CO_(2) battery has been under the spotlight of future battery technologies since it can achieve CO_(2)utilization and energy conversion simultaneously.However,its advancement is hampered by poor energy efficien...The Li-CO_(2) battery has been under the spotlight of future battery technologies since it can achieve CO_(2)utilization and energy conversion simultaneously.However,its advancement is hampered by poor energy efficiency and limited reversibility due to the sluggish kinetics of the CO_(2) reduction and evolution reactions.Herein,a multiscale nanoporous interpenetrating phase nanohybrid of RuAl intermetallic and Cu_(2)O(MP-Cu_(2)O/RuAl) was carved by driving synchronous phase and microstructure evolutions through dealloying of one RuCuAl master alloy.The built-in RuAl intermetallic and Cu_(2)O closely stack to form abundant nano-interfaces with revolutionized electronic structure,The theoretical simulations reveal that the Cu_(2)O/RuAl interface can distinctly reduce the energy barrier of the Li_(2)CO_(3) decomposition reaction,The interconnected pore channels with large surface area can enhance catalytic site accessibility,mass transfer,and uniform deposition of the discharge products.In situ differential electrochemical mass spectrometry discloses that the CO_(2)-to-electron ratio during charging coincides with the theoretical value of 3/4,demonstrating the high efficacy of MP-Cu_(2)O/RuAl in achieving the recycling of CO_(2).The dealloying protocol provides an affordable platform to empower transition metal oxides into high-efficiency electrocatalysts by hybridizing with metallic nano-sponge for advancing the application of Li-CO_(2)batteries.展开更多
Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by...Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by increasing shoot length.Expression of OsUGT75A was higher in the middle regions of the shoot and in shoots under deep-sowing conditions.Levels of free abscisic acid(ABA)and jasmonates(JA)were higher in shoots of OsUGT75A mutants than in those of wild-type plants,and OsUGT75A mutants were more sensitive to ABA and JA treatments.Reduced shoot length was attributed to higher ABA INSENSITIVE 3(OsABI3)expression and lower JASMONATE-ZIM domain protein(OsJAZ)expression in shoots.Shoot extension by OsUGT75A is achieved mainly by promotion of cell elongation.An elite haplotype of OsUGT75A associated with increased shoot length was identified among indica rice accessions.OsUGT75A acts to increase seedling emergence under deep-sowing conditions.展开更多
Differentially expressed genes are thought to regulate the development and progression of oral squamous cell carcinomas (OSCC). The purpose of this study was to screen differentially expressed mRNAs in OSCC and matc...Differentially expressed genes are thought to regulate the development and progression of oral squamous cell carcinomas (OSCC). The purpose of this study was to screen differentially expressed mRNAs in OSCC and matched paraneoplastic normal tissues, and to explore the intrinsic mechanism of OSCC development and progres- sion. We obtained the differentially expressed mRNA expression profiles in 10 pairs of fresh-frozen OSCC tissue specimens and matched paraneoplastic normal tissue specimens by high-throughput RNA sequencing. By using Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the functional significance of the differentially expressed genes were analyzed. We identified 1,120 sig- nificantly up-regulated mRNAs and 178 significantly down-regulated mRNAs in OSCC, compared to normal tissue. The differentially expressed mRNAs were involved in 20 biological processes and 68 signal pathways. Compared to adjacent normal tissue, the expression of MAGEAll was up-regulated; TCHH was down-regulated. These find- ings were verified by real-time PCR. These differentially expressed mRNAs may function as oncogenes or tumor suppressors in the development and progression of OSCC. This study provides novel insights into OSCC. However, further work is needed to determine if these differentially expressed mRNAs have potential roles as diagnostic bio- markers and candidate therapeutic targets for OSCC.展开更多
Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron ...Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron with primitive papeda,hence they are similar from the nutritional and organoleptic standpoints,whereas very different from other citrus species such as orange and mandarin.Except for fresh produce,a signifi cant percentage of lemon and lime are processed and separated as juice,essential oils,pulps and other products.Lemon and lime juice or fruit itself is rich in vitamins,minerals and flavonoids which are rich sources for human nutrition.Consumption of lemon and lime fruit or juice are benefi cial for human health in the scope of urinary citrate increase,oxidative stress relief,improvement in lipid profi les and infl ammation markers,neuroprotective effects among others.These beneficial effects of lemon and lime are not only because of their high vitamin C content but also other bioactive micronutrients such as fl avonoids.Essential oils from lemon and lime have fresh and zesty aroma for perfumery and flavor applications for centuries.Compared with orange or mandarin,the integrated review for lemon and lime dietary bioactive compounds and essential oils is scarce.Therefore,in this review,we introduced the historical cultivation,consumption and process of lemon and lime,discussed the chemical and biological activities of phytochemicals in lemon and lime fruits and juice,and summarized volatile and non-volatile components in lemon and lime oil.This review may provide a comprehensive perspective for entire lemon and lime industry as well as their scientifi c values.展开更多
In this work,we report a method of removing scattering induced retardance in polarization sensitive fnll field optical coherence tomography(PS-FFOCT).First,the Mueller matrix that describes its operation is derived.Th...In this work,we report a method of removing scattering induced retardance in polarization sensitive fnll field optical coherence tomography(PS-FFOCT).First,the Mueller matrix that describes its operation is derived.The thickness invariant retardance induced by the scattering of collagenous fiber bundles is then used to find the accurate values of the birefringence of the layers that consist collagenous fibers.Finally,the initial en face birefringent images of in vitro beef tendon samples are presented to demonstrate the capability of our method.展开更多
A Van Hove singularity(VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases...A Van Hove singularity(VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.展开更多
This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The pr...This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model.展开更多
A solid understanding of the efficiency of early selection for fiber dimensions is a prerequisite for breeding slash pine(Pinus elliottii Engelm.)with improved properties for pulp and paper products.Genetic correlatio...A solid understanding of the efficiency of early selection for fiber dimensions is a prerequisite for breeding slash pine(Pinus elliottii Engelm.)with improved properties for pulp and paper products.Genetic correlations between size of fibers,wood quality and growth properties are also important.To accomplish effective early selection for size of fibers and evaluate the impact for wood quality traits and ring widths,core samples were collected from360 trees of 20 open-pollinated Pinus elliottii families from three genetic trials.Cores were measured by SilviScan,and the age trends for phenotypic values,heritability,early-late genetic correlations,and early selection efficiency for fiber dimensions,such as tangential and radial fiber widths,fiber wall thickness and fiber coarseness,and their correlations with microfibril angle(MFA),modulus of elasticity(MOE),wood density and ring width were investigated.Different phenotypic trends were found for tangential and radial fiber widths while fiber coarseness and wall thickness curves were similar.Age trends of heritability based on area-weighted fiber dimensions were different.Low to moderate heritability from pith to bark(~0.5)was found for all fiber dimension across the three sites except for tangential fiber width and wall thickness at the Ganzhou site.Early-late genetic correlations were 0.9 after age of 9 years,and early selection for fiber dimensions could be effective due to strong genetic correlations.Our results showed moderate to strong positive genetic correlations for modulus of elasticity and density with fiber dimensions.The effects on fiber dimensions were weak or moderate when ring width or wood quality traits were selected alone.Estimates of efficiency for early selection indicated that the optimal age for radial fiber width and fiber coarseness was 6-7 years,while for tangential fiber width and wall thickness was 9-10 years.展开更多
Spindle cell carcinoma is a rare highly malignant squamous cell carcinoma.Here,we describe a case of a 74-yearold Chinese female who presented with a 2-week history of pain and swelling in the left retromolar region.S...Spindle cell carcinoma is a rare highly malignant squamous cell carcinoma.Here,we describe a case of a 74-yearold Chinese female who presented with a 2-week history of pain and swelling in the left retromolar region.Surgical resection and titanium plate prosthesis were performed and histological analysis revealed spindle squamous cell carcinoma.展开更多
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ...This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.展开更多
While the spread of COVID-19 in China is under control,the pandemic is developing rapidly around the world.Due to the normal migration of population,China is facing the high risk from imported cases.The potential spec...While the spread of COVID-19 in China is under control,the pandemic is developing rapidly around the world.Due to the normal migration of population,China is facing the high risk from imported cases.The potential specific medicine and vaccine are still in the process of clinical trials.Currently,controlling the impact of imported cases is the key to prevent new outbreak of COVID-19 in China.In this paper,we propose two impulsive systems to describe the impact of multilateral imported cases of COVID-19.Based on the published data,we simulate and analyze the epidemic trends under different control strategies.In particular,we compare four different scenarios and show the corresponding medical burden.The results can be useful in designing appropriate control strategy for imported cases in practice.展开更多
In recent years,garbage classification and environmental protection are gradually becoming an important step in the construction of ecological civilization in China.However,the popularity and commercial value of the a...In recent years,garbage classification and environmental protection are gradually becoming an important step in the construction of ecological civilization in China.However,the popularity and commercial value of the application of artificial intelligence trash cans in Beijing are not high at present.This article analyzes these problems one by one and propose solutions,hoping that the commercial value of artificial intelligence trash cans can be optimized and improved and to make the city greener.This paper uses the questionnaire method and the literature method to research and analyze the optimization of the business model of artificial intelligence in garbage classification.展开更多
The application of artificial intelligence technology to the field of garbage classification can reduce labor costs and improve the efficiency of garbage classification.Under the background of the gradual promotion of...The application of artificial intelligence technology to the field of garbage classification can reduce labor costs and improve the efficiency of garbage classification.Under the background of the gradual promotion of compulsory classification of domestic waste,a large number of artificial intelligence products serving garbage classification have emerged.Most of these products are based on computer vision technology.main.At this stage,artificial intelligence in the field of garbage classification has shown trends such as whole-process integration,platform-based management,and diversification of technical solutions.展开更多
Despite recent advances in extrusion bioprinting of cell-laden hydrogels,using nat-urally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical...Despite recent advances in extrusion bioprinting of cell-laden hydrogels,using nat-urally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge.Here,we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure.The tough hydrogels con-sisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid(o-nitrobenzyl-grafted hyaluronic acid)and elastin through Schiff’s base reac-tion,and free-radically polymerized gelatin methacryloyl.The incorporation of elastin further improved the elasticity,stretchability(∼170%strain),and tough-ness(∼45 kJ m-3)of the hydrogels due to the random coiling structure.We used this novel class of hydrogel bioinks to bioprint several complex elastic tissues with good shape retention.Furthermore,in vitro and in vivo experiments also demon-strated that the existence of elastin in the biocompatible bioinks facilitated improved cell behaviors and biological functions of bioprinted tissues,such as cell spreading and phenotype maintenance as well as tissue regeneration.The results confirmed the potential of the elastin-containing tough hydrogel bioinks for bioprinting of 3D complex elastic tissues with biological functionalities,which mayfind widespread applications in elastic tissue regeneration.展开更多
Introduction:In recent years,the incidence of measles in China has consistently remained below 1 per 100,000 population,yet the disease has not been eliminated.This study aims to comprehensively analyze the epidemiolo...Introduction:In recent years,the incidence of measles in China has consistently remained below 1 per 100,000 population,yet the disease has not been eliminated.This study aims to comprehensively analyze the epidemiological characteristics of measles from 2005 to 2022,identify high-risk populations and areas,and propose targeted interventions.Methods:We utilized data from the China Disease Prevention and Control Information System for our comprehensive analysis.Spatial autocorrelation was employed to examine the spatial clustering of measles,while spatiotemporal scanning analysis was used to detect spatiotemporal clustering to describe measles epidemiology during the study period.Results:Between 2005 and 2022,732,218 measles cases were reported in China.Overall,the incidence of measles exhibited a downward trend,particularly during the periods of 2008-2011 and 2015-2022.In 2022,the incidence rate reached its historical low at 0.039 per 100,000 population.Measles predominantly affects young children.Since 2017,global spatial clustering has diminished,although hotspot areas persist in the western provinces.Spatial-temporal scanning identified a high-incidence cluster from 2005 to 2008,comprising 15 provinces in the western,central,and northern regions of China.Conversely,from 2016 to 2022,a low-incidence cluster was detected in the southern and central provinces.Conclusions:China has made significant progress in measles prevention and control.The recent low incidence and absence of substantial spatiotemporal clustering indicate that China is nearing measles elimination.However,there is a continuing need to enhance prevention and control efforts among very young children and in historic incidence hotspots in western provinces.Additionally,improving the diagnosis of vaccine-associated rash illnesses is essential.展开更多
Stratospheric airships are long-endurance aerostats and have broad applications.All of the energy required for their operation is obtained from solar radiation,which makes accurate calculation of the energy output fro...Stratospheric airships are long-endurance aerostats and have broad applications.All of the energy required for their operation is obtained from solar radiation,which makes accurate calculation of the energy output from the solar array crucial to the design and flight planning of the airships.However,the status of each photovoltaic module in the solar array may differ due to the airship curvature,resulting in mismatch losses and lowered output power,which has not been widely studied.In this paper,an irradiation model and a thermal model are established based on the actual arrangement of the modules.The output power model is established considering the non-uniform radiation in the array.The mismatch losses of the array are analyzed under different flight conditions.The output power of the solar array is decreased by up to 31.6%compared to the ideal state.Moreover,the proportion of mismatch losses increases with latitude,but the maximum mismatch loss power occurs at mid-latitudes.Then,an array reconfiguration method is proposed based on the irradiance dispersion index and position dispersion index.The reconfigured array increases output power by 11.5%and can maintain energy balance in continuous flight.The results can be used to correct the overestimation of the output power during the airship design or to guide the configuration of the solar array.展开更多
African swine fever virus(ASFV)poses a significant threat to the global swine industry.Currently,there are no effective vaccines or treatments available to combat ASFV infection in pigs.The primary means of controllin...African swine fever virus(ASFV)poses a significant threat to the global swine industry.Currently,there are no effective vaccines or treatments available to combat ASFV infection in pigs.The primary means of controlling the spread of the disease is through rapid detection and subsequent elimination of infected pig.Recently,a lower virulent ASFV isolate with a deleted EP402R gene(CD2v-deleted)has been reported in China,which further complicates the control of ASFV infection in pig farms.Furthermore,an EP402R-deleted ASFV variant has been developed as a potential live attenuated vaccine candidate strain.Therefore,it is crucial to develop detection methods that can distinguish wild-type and EP402R-deleted ASFV infections.In this study,two recombinant ASFV-p72 and-CD2v proteins were expressed using a prokaryotic system and used to immunize Bactrian camels.Subsequently,eight nanobodies against ASFV-p72 and ten nanobodies against ASFV-CD2v were screened.Following the production of these nanobodies with horse radish peroxidase(HRP)fusion proteins,the ASFV-p72-Nb2-HRP and ASFV-CD2v-Nb22-HRP fusions were selected for the development of two competitive ELISAs(cELISAs)to detect anti-ASFV antibodies.The two cELISAs exhibited high sensitivity,good specificity,repeatability,and stability.The coincidence rate between the two cELISAs and commercial ELISA kits was 98.6%and 97.6%,respectively.Collectively,the two cELISA for detecting antibodies against ASFV demonstrated ease of operation,a low cost,and a simple production process.The two cELISAs could determine whether pigs were infected with wild-type or CD2v-deleted ASFV,and could play an important role in monitoring ASFV infections in pig farms.展开更多
基金supported by the SIAT Innovation Program for Excellent Young Researchers,No.E1G0241001(to XZ)。
文摘Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies.
基金supported by the Natural Science Foundation of Shandong Province (ZR2023MB017,ZR2021QB055,ZR2020QB014,ZR2022JQ10)the National Natural Science Foundation of China (21901146,220781792,52007110)the Taishan Scholar Foundation (tsqn201812063)。
文摘P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs.
基金supported by the National Natural Science Foundation of China(32273041)the Key R&D Program of Shaanxi Province,China(2022NY-104)the Natural Science Foundation of Shaanxi Province,China(2022JC-12)。
文摘Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA)has been used to distinguish gE-deleted vaccine-immunized pigs from wild-type virus-infected pigs to eradicate PR in some countries.Nanobody has the advantages of small size and easy genetic engineering and has been a promising diagnostic reagent.However,there were few reports about developing nanobody-based ELISA for detecting anti-PRV-gE antibodies.In the present study,the recombinant PRV-gE was expressed with a bacterial system and used to immunize the Bactrian camel.Then,two nanobodies against PRV-gE were screened from the immunized camel by phage display technique.Subsequently,two nanobody-HRP fusion proteins were expressed with HEK293T cells.The PRV-gE-Nb36-HRP fusion protein was selected as the probe for developing the blocking ELISA(bELISA)to detect anti-PRV-gE antibodies.Through optimizing the conditions of bELISA,the amount of coated antigen was 200 ng per well,and dilutions of the fusion protein and tested pig sera were separately 1:320 and 1:5.The cut-off value of bELISA was 24.20%,and the sensitivity and specificity were 96.43 and 92.63%,respectively.By detecting 233 clinical pig sera with the developed bELISA and a commercial kit,the results showed that the coincidence rate of two assays was 93.99%.Additionallly,epitope mapping showed that PRV-gE-Nb36 recognized a conserved conformational epitope in different reference PRV strains.Simple,great stability and low-cost nanobody-based bELISA for detecting anti-PRV-gE antibodies were developed.The bELISA could be used for monitoring and eradicating PR.
基金financially National Natural Science Foundation of China (52201254)Natural Science Foundation of Shandong Province (ZR2023ME155, ZR2023ME085)+4 种基金project of “20 Items of University” of Jinan (202228046)Taishan Scholar Project of Shandong Province (tsqn202306226)Scientific Research Foundation for New Talents in University of Jinan (16010089104)Introducing Major Universities and Research Institutions to Jointly Build Innovative Carrier Project of Jining City (2023DYDS022)support provided by the Shandong Province Laboratory of Technology and Equipment for Molecular Diagnosis。
文摘The Li-CO_(2) battery has been under the spotlight of future battery technologies since it can achieve CO_(2)utilization and energy conversion simultaneously.However,its advancement is hampered by poor energy efficiency and limited reversibility due to the sluggish kinetics of the CO_(2) reduction and evolution reactions.Herein,a multiscale nanoporous interpenetrating phase nanohybrid of RuAl intermetallic and Cu_(2)O(MP-Cu_(2)O/RuAl) was carved by driving synchronous phase and microstructure evolutions through dealloying of one RuCuAl master alloy.The built-in RuAl intermetallic and Cu_(2)O closely stack to form abundant nano-interfaces with revolutionized electronic structure,The theoretical simulations reveal that the Cu_(2)O/RuAl interface can distinctly reduce the energy barrier of the Li_(2)CO_(3) decomposition reaction,The interconnected pore channels with large surface area can enhance catalytic site accessibility,mass transfer,and uniform deposition of the discharge products.In situ differential electrochemical mass spectrometry discloses that the CO_(2)-to-electron ratio during charging coincides with the theoretical value of 3/4,demonstrating the high efficacy of MP-Cu_(2)O/RuAl in achieving the recycling of CO_(2).The dealloying protocol provides an affordable platform to empower transition metal oxides into high-efficiency electrocatalysts by hybridizing with metallic nano-sponge for advancing the application of Li-CO_(2)batteries.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2022B0202060006)the Natural Science Foundation of Guangdong Province(2023A1515012052,2023A1515012092)+2 种基金the Science and Technology Project of Guangzhou(2023A04J0749,2023A04J1452)the Special Fund for Student Cultivation of Scientific and Technological Innovation of Guangdong Province(pdjh2021b0084)the Double First-Class Discipline Promotion Project of South China Agricultural University(2021B10564001).
文摘Poor seedling emergence is a challenge for direct seeding of rice under deep-sowing field conditions.Here we reveal that UDP-glucosyltransferase OsUGT75A promotes rice seedling emergence under deepsowing conditions by increasing shoot length.Expression of OsUGT75A was higher in the middle regions of the shoot and in shoots under deep-sowing conditions.Levels of free abscisic acid(ABA)and jasmonates(JA)were higher in shoots of OsUGT75A mutants than in those of wild-type plants,and OsUGT75A mutants were more sensitive to ABA and JA treatments.Reduced shoot length was attributed to higher ABA INSENSITIVE 3(OsABI3)expression and lower JASMONATE-ZIM domain protein(OsJAZ)expression in shoots.Shoot extension by OsUGT75A is achieved mainly by promotion of cell elongation.An elite haplotype of OsUGT75A associated with increased shoot length was identified among indica rice accessions.OsUGT75A acts to increase seedling emergence under deep-sowing conditions.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,2014-37)
文摘Differentially expressed genes are thought to regulate the development and progression of oral squamous cell carcinomas (OSCC). The purpose of this study was to screen differentially expressed mRNAs in OSCC and matched paraneoplastic normal tissues, and to explore the intrinsic mechanism of OSCC development and progres- sion. We obtained the differentially expressed mRNA expression profiles in 10 pairs of fresh-frozen OSCC tissue specimens and matched paraneoplastic normal tissue specimens by high-throughput RNA sequencing. By using Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the functional significance of the differentially expressed genes were analyzed. We identified 1,120 sig- nificantly up-regulated mRNAs and 178 significantly down-regulated mRNAs in OSCC, compared to normal tissue. The differentially expressed mRNAs were involved in 20 biological processes and 68 signal pathways. Compared to adjacent normal tissue, the expression of MAGEAll was up-regulated; TCHH was down-regulated. These find- ings were verified by real-time PCR. These differentially expressed mRNAs may function as oncogenes or tumor suppressors in the development and progression of OSCC. This study provides novel insights into OSCC. However, further work is needed to determine if these differentially expressed mRNAs have potential roles as diagnostic bio- markers and candidate therapeutic targets for OSCC.
基金supported by Hubei Science and Technology Plan Key Project(G2019ABA100).
文摘Human beings have consumed lemon(Citrus limon)and lime(Citrus aurantifolia or Citrus latiflia)for thousands of years.Among the variety of citrus families,lemon and lime are originated from the hybridization of citron with primitive papeda,hence they are similar from the nutritional and organoleptic standpoints,whereas very different from other citrus species such as orange and mandarin.Except for fresh produce,a signifi cant percentage of lemon and lime are processed and separated as juice,essential oils,pulps and other products.Lemon and lime juice or fruit itself is rich in vitamins,minerals and flavonoids which are rich sources for human nutrition.Consumption of lemon and lime fruit or juice are benefi cial for human health in the scope of urinary citrate increase,oxidative stress relief,improvement in lipid profi les and infl ammation markers,neuroprotective effects among others.These beneficial effects of lemon and lime are not only because of their high vitamin C content but also other bioactive micronutrients such as fl avonoids.Essential oils from lemon and lime have fresh and zesty aroma for perfumery and flavor applications for centuries.Compared with orange or mandarin,the integrated review for lemon and lime dietary bioactive compounds and essential oils is scarce.Therefore,in this review,we introduced the historical cultivation,consumption and process of lemon and lime,discussed the chemical and biological activities of phytochemicals in lemon and lime fruits and juice,and summarized volatile and non-volatile components in lemon and lime oil.This review may provide a comprehensive perspective for entire lemon and lime industry as well as their scientifi c values.
基金This research was supported by the Fundamental Research Funds for the Central Universities(30920010003)the Natural Science Foundation of China(NSFC)(61275198,60978069).
文摘In this work,we report a method of removing scattering induced retardance in polarization sensitive fnll field optical coherence tomography(PS-FFOCT).First,the Mueller matrix that describes its operation is derived.The thickness invariant retardance induced by the scattering of collagenous fiber bundles is then used to find the accurate values of the birefringence of the layers that consist collagenous fibers.Finally,the initial en face birefringent images of in vitro beef tendon samples are presented to demonstrate the capability of our method.
基金supported by National Science Foundation of China (Grant No. 51472057)the Major Nanoprojects of Ministry of Science and Technology of China (2016YFA0200403)
文摘A Van Hove singularity(VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.
文摘This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model.
基金supported by the National Natural Science Foundation of China(No.32260407)Science and Technology Leader Foundation of Jiangxi Province(No.20212BCJ23011)National Natural Science Foundation of China(No.31860220 and 32160385)。
文摘A solid understanding of the efficiency of early selection for fiber dimensions is a prerequisite for breeding slash pine(Pinus elliottii Engelm.)with improved properties for pulp and paper products.Genetic correlations between size of fibers,wood quality and growth properties are also important.To accomplish effective early selection for size of fibers and evaluate the impact for wood quality traits and ring widths,core samples were collected from360 trees of 20 open-pollinated Pinus elliottii families from three genetic trials.Cores were measured by SilviScan,and the age trends for phenotypic values,heritability,early-late genetic correlations,and early selection efficiency for fiber dimensions,such as tangential and radial fiber widths,fiber wall thickness and fiber coarseness,and their correlations with microfibril angle(MFA),modulus of elasticity(MOE),wood density and ring width were investigated.Different phenotypic trends were found for tangential and radial fiber widths while fiber coarseness and wall thickness curves were similar.Age trends of heritability based on area-weighted fiber dimensions were different.Low to moderate heritability from pith to bark(~0.5)was found for all fiber dimension across the three sites except for tangential fiber width and wall thickness at the Ganzhou site.Early-late genetic correlations were 0.9 after age of 9 years,and early selection for fiber dimensions could be effective due to strong genetic correlations.Our results showed moderate to strong positive genetic correlations for modulus of elasticity and density with fiber dimensions.The effects on fiber dimensions were weak or moderate when ring width or wood quality traits were selected alone.Estimates of efficiency for early selection indicated that the optimal age for radial fiber width and fiber coarseness was 6-7 years,while for tangential fiber width and wall thickness was 9-10 years.
文摘Spindle cell carcinoma is a rare highly malignant squamous cell carcinoma.Here,we describe a case of a 74-yearold Chinese female who presented with a 2-week history of pain and swelling in the left retromolar region.Surgical resection and titanium plate prosthesis were performed and histological analysis revealed spindle squamous cell carcinoma.
基金the Fundamental Research Funds for the National Key Research and Development Project of China(Grant No.2020YFB1807403)the National Natural Science Foundation of China(Grant Nos.62174125 and 62131014)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.QTZX22022 and YJS2213)the Innovation Fund of Xidian University.
文摘This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.
基金National Natural Science Foundation of China(Grant Nos.41704116,11901234,11926104)Jilin Provincial Excellent Youth Talents Foundation(Grant No.20180520093JH)+1 种基金Scientific Research Project of Education Department of Jilin Province(Grant No.JJKH20200933KJ)Scientific Research Project of Shanghai Science and Technology Commission(Grant No.19511132000)。
文摘While the spread of COVID-19 in China is under control,the pandemic is developing rapidly around the world.Due to the normal migration of population,China is facing the high risk from imported cases.The potential specific medicine and vaccine are still in the process of clinical trials.Currently,controlling the impact of imported cases is the key to prevent new outbreak of COVID-19 in China.In this paper,we propose two impulsive systems to describe the impact of multilateral imported cases of COVID-19.Based on the published data,we simulate and analyze the epidemic trends under different control strategies.In particular,we compare four different scenarios and show the corresponding medical burden.The results can be useful in designing appropriate control strategy for imported cases in practice.
文摘In recent years,garbage classification and environmental protection are gradually becoming an important step in the construction of ecological civilization in China.However,the popularity and commercial value of the application of artificial intelligence trash cans in Beijing are not high at present.This article analyzes these problems one by one and propose solutions,hoping that the commercial value of artificial intelligence trash cans can be optimized and improved and to make the city greener.This paper uses the questionnaire method and the literature method to research and analyze the optimization of the business model of artificial intelligence in garbage classification.
文摘The application of artificial intelligence technology to the field of garbage classification can reduce labor costs and improve the efficiency of garbage classification.Under the background of the gradual promotion of compulsory classification of domestic waste,a large number of artificial intelligence products serving garbage classification have emerged.Most of these products are based on computer vision technology.main.At this stage,artificial intelligence in the field of garbage classification has shown trends such as whole-process integration,platform-based management,and diversification of technical solutions.
基金Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences,Grant/Award Numbers:2021-I2M-1-052,2017-I2M-1-007National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases,Grant/Award Number:21025National Natural Science Foundation of China,Grant/Award Numbers:82371796,81871575。
文摘Despite recent advances in extrusion bioprinting of cell-laden hydrogels,using nat-urally derived bioinks to biofabricate complex elastic tissues with both satisfying biological functionalities and superior mechanical properties is hitherto an unmet challenge.Here,we address this challenge with precisely designed biological tough hydrogel bioinks featuring a double-network structure.The tough hydrogels con-sisted of energy-dissipative dynamically crosslinked glycosaminoglycan hyaluronic acid(o-nitrobenzyl-grafted hyaluronic acid)and elastin through Schiff’s base reac-tion,and free-radically polymerized gelatin methacryloyl.The incorporation of elastin further improved the elasticity,stretchability(∼170%strain),and tough-ness(∼45 kJ m-3)of the hydrogels due to the random coiling structure.We used this novel class of hydrogel bioinks to bioprint several complex elastic tissues with good shape retention.Furthermore,in vitro and in vivo experiments also demon-strated that the existence of elastin in the biocompatible bioinks facilitated improved cell behaviors and biological functions of bioprinted tissues,such as cell spreading and phenotype maintenance as well as tissue regeneration.The results confirmed the potential of the elastin-containing tough hydrogel bioinks for bioprinting of 3D complex elastic tissues with biological functionalities,which mayfind widespread applications in elastic tissue regeneration.
基金Supported by the operation of the public health emergency response mechanism of the Chinese Center for Disease Control and Prevention(102393220020010000017).
文摘Introduction:In recent years,the incidence of measles in China has consistently remained below 1 per 100,000 population,yet the disease has not been eliminated.This study aims to comprehensively analyze the epidemiological characteristics of measles from 2005 to 2022,identify high-risk populations and areas,and propose targeted interventions.Methods:We utilized data from the China Disease Prevention and Control Information System for our comprehensive analysis.Spatial autocorrelation was employed to examine the spatial clustering of measles,while spatiotemporal scanning analysis was used to detect spatiotemporal clustering to describe measles epidemiology during the study period.Results:Between 2005 and 2022,732,218 measles cases were reported in China.Overall,the incidence of measles exhibited a downward trend,particularly during the periods of 2008-2011 and 2015-2022.In 2022,the incidence rate reached its historical low at 0.039 per 100,000 population.Measles predominantly affects young children.Since 2017,global spatial clustering has diminished,although hotspot areas persist in the western provinces.Spatial-temporal scanning identified a high-incidence cluster from 2005 to 2008,comprising 15 provinces in the western,central,and northern regions of China.Conversely,from 2016 to 2022,a low-incidence cluster was detected in the southern and central provinces.Conclusions:China has made significant progress in measles prevention and control.The recent low incidence and absence of substantial spatiotemporal clustering indicate that China is nearing measles elimination.However,there is a continuing need to enhance prevention and control efforts among very young children and in historic incidence hotspots in western provinces.Additionally,improving the diagnosis of vaccine-associated rash illnesses is essential.
基金supported by the National Natural Science Foundation of China(No.51775021)the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-JC-02,YWF-23-JC-09)。
文摘Stratospheric airships are long-endurance aerostats and have broad applications.All of the energy required for their operation is obtained from solar radiation,which makes accurate calculation of the energy output from the solar array crucial to the design and flight planning of the airships.However,the status of each photovoltaic module in the solar array may differ due to the airship curvature,resulting in mismatch losses and lowered output power,which has not been widely studied.In this paper,an irradiation model and a thermal model are established based on the actual arrangement of the modules.The output power model is established considering the non-uniform radiation in the array.The mismatch losses of the array are analyzed under different flight conditions.The output power of the solar array is decreased by up to 31.6%compared to the ideal state.Moreover,the proportion of mismatch losses increases with latitude,but the maximum mismatch loss power occurs at mid-latitudes.Then,an array reconfiguration method is proposed based on the irradiance dispersion index and position dispersion index.The reconfigured array increases output power by 11.5%and can maintain energy balance in continuous flight.The results can be used to correct the overestimation of the output power during the airship design or to guide the configuration of the solar array.
基金supported by the Natural Science Foundation of China(grant no.32273041)the Natural Science Foundation of Shaanxi Province of China(grant no.2022JC-12)+1 种基金the Key R&D Program of Shaanxi Province(grant no.S2022-YF-YBNY-0673)the Central Public-interest Scientific Institution Basal Research Fund.
文摘African swine fever virus(ASFV)poses a significant threat to the global swine industry.Currently,there are no effective vaccines or treatments available to combat ASFV infection in pigs.The primary means of controlling the spread of the disease is through rapid detection and subsequent elimination of infected pig.Recently,a lower virulent ASFV isolate with a deleted EP402R gene(CD2v-deleted)has been reported in China,which further complicates the control of ASFV infection in pig farms.Furthermore,an EP402R-deleted ASFV variant has been developed as a potential live attenuated vaccine candidate strain.Therefore,it is crucial to develop detection methods that can distinguish wild-type and EP402R-deleted ASFV infections.In this study,two recombinant ASFV-p72 and-CD2v proteins were expressed using a prokaryotic system and used to immunize Bactrian camels.Subsequently,eight nanobodies against ASFV-p72 and ten nanobodies against ASFV-CD2v were screened.Following the production of these nanobodies with horse radish peroxidase(HRP)fusion proteins,the ASFV-p72-Nb2-HRP and ASFV-CD2v-Nb22-HRP fusions were selected for the development of two competitive ELISAs(cELISAs)to detect anti-ASFV antibodies.The two cELISAs exhibited high sensitivity,good specificity,repeatability,and stability.The coincidence rate between the two cELISAs and commercial ELISA kits was 98.6%and 97.6%,respectively.Collectively,the two cELISA for detecting antibodies against ASFV demonstrated ease of operation,a low cost,and a simple production process.The two cELISAs could determine whether pigs were infected with wild-type or CD2v-deleted ASFV,and could play an important role in monitoring ASFV infections in pig farms.