Optimizing the interfacial quality of halide perovskites heterojunction to promote the photogenerated charge separation is of great significance in photocatalytic reactions.However,the delicately regulation of interfa...Optimizing the interfacial quality of halide perovskites heterojunction to promote the photogenerated charge separation is of great significance in photocatalytic reactions.However,the delicately regulation of interfacial structure and properties of halide perovskites hybrid is still a big challenge owing to the growth uncontrollability and incompatibility between different constituents.Here we use Bi OBr nanosheets as the start-template to in situ epitaxially grow Cs_(3)Bi_(2)Br_(9)nanosheets by“cosharing”Bi and Br atoms strategy for designing a 2D/2D Cs_(3)Bi_(2)Br_(9)/BiOBr heterojunction.Systematic studies show that the epitaxial heterojunction can optimize the synergistic effect of Bi OBr and Cs_(3)Bi_(2)Br_(9)via the formation of tight-contact interfaces,strong interfacial electronic coupling and charge redistribution,which can not only drive the Z-scheme charge transfer mechanism to greatly promote the spatial separation of electronhole pairs,but also modulate the interfacial electronic structure to facilitate the adsorption and activation of toluene molecules.The heterojunction exhibited 62.3 and 2.4-fold photoactivity improvement for toluene oxidation to benzaldehyde than parental Bi OBr and Cs_(3)Bi_(2)Br_(9),respectively.This study not only proposed a novel dual atom-bridge protocol to engineer high-quality perovskite heterojunctions,but also uncovered the potential of heterojunction in promoting electron-hole separation as well as the application in photocatalytic organic synthesis.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22175202,22005351,22365016)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010180)+3 种基金Program of Guangzhou Science and Technology(No.202201011591)the Science and Technology Innovation Program of Hunan Province(No.2023RC3179)Scientific Research Start-up Fund of Jishou University(No.1122003)support of National Supercomputer Center in Sun Yat-sen University,Guangzhou。
文摘Optimizing the interfacial quality of halide perovskites heterojunction to promote the photogenerated charge separation is of great significance in photocatalytic reactions.However,the delicately regulation of interfacial structure and properties of halide perovskites hybrid is still a big challenge owing to the growth uncontrollability and incompatibility between different constituents.Here we use Bi OBr nanosheets as the start-template to in situ epitaxially grow Cs_(3)Bi_(2)Br_(9)nanosheets by“cosharing”Bi and Br atoms strategy for designing a 2D/2D Cs_(3)Bi_(2)Br_(9)/BiOBr heterojunction.Systematic studies show that the epitaxial heterojunction can optimize the synergistic effect of Bi OBr and Cs_(3)Bi_(2)Br_(9)via the formation of tight-contact interfaces,strong interfacial electronic coupling and charge redistribution,which can not only drive the Z-scheme charge transfer mechanism to greatly promote the spatial separation of electronhole pairs,but also modulate the interfacial electronic structure to facilitate the adsorption and activation of toluene molecules.The heterojunction exhibited 62.3 and 2.4-fold photoactivity improvement for toluene oxidation to benzaldehyde than parental Bi OBr and Cs_(3)Bi_(2)Br_(9),respectively.This study not only proposed a novel dual atom-bridge protocol to engineer high-quality perovskite heterojunctions,but also uncovered the potential of heterojunction in promoting electron-hole separation as well as the application in photocatalytic organic synthesis.