[Objectives]To select the virus-free Citrus reticulata Hongmeiren as test material to select rootstocks suitable for local cultivation,and to carry out demonstration and popularization of suitable rootstocks for plant...[Objectives]To select the virus-free Citrus reticulata Hongmeiren as test material to select rootstocks suitable for local cultivation,and to carry out demonstration and popularization of suitable rootstocks for planting C.reticulata Hongmeiren in the south bank of Hangzhou Bay.[Methods]The effects of different rootstocks on the survival rate,biological characteristics and fruit quality were analyzed by grafting onto three kinds of rootstocks,namely,C.unshiu Marc.cv.Owari,S.mandarin cv.Miyagawa wase and C.trifoliata L.[Results]The grafting survival rate for C.trifoliata L.was the highest;from the index of scion growth,the scion diameter,new shoot length,new shoot thickness and leaf area of C.unshiu Marc.cv.Owari were the largest,and the tree height of S.mandarin cv.Miyagawa wase was the highest;from the fruit quality index,the fruit quality of C.unshiu Marc.cv.Owari was the best.[Conclusions]C.unshiu Marc.cv.Owari is suitable as the preferred rootstock for virus-free C.reticulata Hongmeiren on the south bank of Hangzhou Bay,and can be demonstrated and promoted.展开更多
Background:The hyper-prolificacy Meishan gilts achieved a superior endometrial gland development(EGD)than white crossbred gilts during the ovary-independent period(before 60 d of age).Then,the EGD continues under the ...Background:The hyper-prolificacy Meishan gilts achieved a superior endometrial gland development(EGD)than white crossbred gilts during the ovary-independent period(before 60 d of age).Then,the EGD continues under the management of ovary-derived steroid hormones that regulated by gut microbiota(after 60 d of age).However,whether Meishan gilts’superiority in EGD lasting to the ovary-dependent period(after 60 d of age)and the role of gut microbiota in this period both remain unclear.Methods:Meishan gilts and Landrace x Yorkshire(LxY)gilts were raised under the same housing and feeding conditions until sexual maturity and then we compared their EGD and gut microbiota.Meanwhile,we transplanted fecal microbiota from Meishan gilts to L×Y gilts to explore the role of gut microbiota in EGD.We sampled plasma every 3 weeks and collected the uterus,ovary,liver,and rectal feces after the sacrifice.We then determined the hormone concentrations and expressions of the EGD-related genes.We also profiled the gut microbiota using 16S rDNA sequencing and metabolites of plasma and liver tissue using untargeted metabolomics.Finally,the correlation analysis and significant test was conducted between FMT-shifted gut microbes and EGD-related indices.Results:Meishan gilts have larger endometrial gland area(P<0.001),longer uterine horn length(P<0.01)but lighter uterine horn weight(P<0.05),a distinctive gut microbiota compared with L×Y gilts.Fecal microbiota transplantation(FMT)increased endometrial gland area(P<0.01).FMT markedly shifted the metabolite profiles of both liver and plasma,and these differential metabolites enriched in steroid hormone biosynthesis pathway.FMT increased estradiol and insulin-like growth factor 1 but decreased progesterone dynamically.FMT also increased the expression of the EGD-related genes estrogen receptor 1 gene,epithelial cadherin,and forkhead box protein A2.There is a significant correlation between FMT-shifted gut microbes and EGD-related indices.Conclusion:Sexually matured Meishan gilts achieved a superior EGD than LxY gilts.Meanwhile,gut microbiota contribute to the EGD potentially via regulating of steroid hormones during the ovary-dependent period.展开更多
Background The mechanism by which Meishan(MS)sows are superior to white crossbred sows in ovarian follicle development remains unclear.Given gut microbiota could regulate female ovarian function and reproductive capac...Background The mechanism by which Meishan(MS)sows are superior to white crossbred sows in ovarian follicle development remains unclear.Given gut microbiota could regulate female ovarian function and reproductive capacity,this study aimed to determine the role of gut microbiota-ovary axis on follicular development in sows.Methods We compared the ovarian follicular development,gut microbiota,plasma metabolome,and follicular fluid metabolome between MS and Landrace×Yorkshire(L×Y)sows.A H_(2)O_(2)-induced cell apoptosis model was used to evaluate the effects of multi-omics identified metabolites on the apoptosis of porcine ovarian granulosa cells in vitro.Results Compared with L×Y sows,MS sows have greater ovary weight and improved follicular development,including the greater counts of large follicles of diameter≥5 mm,secondary follicles,and antral follicles,but lesser atretic follicles.The ovarian granulosa cells in MS sows had alleviated apoptosis,which was indicated by the increased BCL-2,decreased caspases-3,and decreased cleaved caspases-3 than in L×Y sows.The ovarian follicular fluid of MS sows had higher concentrations of estradiol,progesterone,follicle-stimulating hormone,luteinizing hormone,and insulin like growth factor 1 than L×Y sows.Gut microbiota of MS sows formed a distinct cluster and had improved alpha diversity,including increased Shannon and decreased Simpson than those of L×Y sows.Corresponding to the enhanced function of carbohydrate metabolism and elevated short-chain fatty acids(SCFAs)in feces,the differential metabolites in plasma between MS and L×Y sows are also mainly enriched in pathways of fatty acid metabolism.There were significant correlations among SCFAs with follicular development,ovarian granulosa cells apoptosis,and follicular fluid hormones,respectively.Noteworthily,compared with L×Y sows,MS sows had higher follicular fluid SCFAs concentrations which could ameliorate H_(2)O_(2)-induced porcine granulosa cells apoptosis in vitro.Conclusion MS sows have more secondary and antral follicles,but fewer atretic follicles and apoptotic ovarian granulosa cells,as well as harbored a distinctive gut microbiota than L×Y sows.Gut microbiota may participate in regulating ovarian follicular development via SCFAs affecting granulosa cells apoptosis in sows.展开更多
With the availability of petabytes of oceanographic observations and numerical model simulations,artificial intelligence(AI)tools are being increasingly leveraged in a variety of applications.In this paper,these appli...With the availability of petabytes of oceanographic observations and numerical model simulations,artificial intelligence(AI)tools are being increasingly leveraged in a variety of applications.In this paper,these applications are reviewed from the perspectives of identifying,forecasting,and parameterizing ocean phenomena.Specifically,the usage of AI algorithms for the identification of mesoscale eddies,internal waves,oil spills,sea ice,and marine algae are discussed in this paper.Additionally,AI-based forecasting of surface waves,the El Niño Southern Oscillation,and storm surges is discussed.This is followed by a discussion on the usage of these schemes to parameterize oceanic turbulence and atmospheric moist physics.Moreover,physics-informed deep learning and neural networks are discussed within an oceanographic context,and further applications with ocean digital twins and physics-constrained AI algorithms are described.This review is meant to introduce beginners and experts in the marine sciences to AI methodologies and stimulate future research toward the usage of causality-adherent physics-informed neural networks and Fourier neural networks in oceanography.展开更多
文摘[Objectives]To select the virus-free Citrus reticulata Hongmeiren as test material to select rootstocks suitable for local cultivation,and to carry out demonstration and popularization of suitable rootstocks for planting C.reticulata Hongmeiren in the south bank of Hangzhou Bay.[Methods]The effects of different rootstocks on the survival rate,biological characteristics and fruit quality were analyzed by grafting onto three kinds of rootstocks,namely,C.unshiu Marc.cv.Owari,S.mandarin cv.Miyagawa wase and C.trifoliata L.[Results]The grafting survival rate for C.trifoliata L.was the highest;from the index of scion growth,the scion diameter,new shoot length,new shoot thickness and leaf area of C.unshiu Marc.cv.Owari were the largest,and the tree height of S.mandarin cv.Miyagawa wase was the highest;from the fruit quality index,the fruit quality of C.unshiu Marc.cv.Owari was the best.[Conclusions]C.unshiu Marc.cv.Owari is suitable as the preferred rootstock for virus-free C.reticulata Hongmeiren on the south bank of Hangzhou Bay,and can be demonstrated and promoted.
基金supported by the Natural Science Foundation of China(31730090 and 31925037)Hubei Provincial Natural Science Foundation of China(2018CFA020).
文摘Background:The hyper-prolificacy Meishan gilts achieved a superior endometrial gland development(EGD)than white crossbred gilts during the ovary-independent period(before 60 d of age).Then,the EGD continues under the management of ovary-derived steroid hormones that regulated by gut microbiota(after 60 d of age).However,whether Meishan gilts’superiority in EGD lasting to the ovary-dependent period(after 60 d of age)and the role of gut microbiota in this period both remain unclear.Methods:Meishan gilts and Landrace x Yorkshire(LxY)gilts were raised under the same housing and feeding conditions until sexual maturity and then we compared their EGD and gut microbiota.Meanwhile,we transplanted fecal microbiota from Meishan gilts to L×Y gilts to explore the role of gut microbiota in EGD.We sampled plasma every 3 weeks and collected the uterus,ovary,liver,and rectal feces after the sacrifice.We then determined the hormone concentrations and expressions of the EGD-related genes.We also profiled the gut microbiota using 16S rDNA sequencing and metabolites of plasma and liver tissue using untargeted metabolomics.Finally,the correlation analysis and significant test was conducted between FMT-shifted gut microbes and EGD-related indices.Results:Meishan gilts have larger endometrial gland area(P<0.001),longer uterine horn length(P<0.01)but lighter uterine horn weight(P<0.05),a distinctive gut microbiota compared with L×Y gilts.Fecal microbiota transplantation(FMT)increased endometrial gland area(P<0.01).FMT markedly shifted the metabolite profiles of both liver and plasma,and these differential metabolites enriched in steroid hormone biosynthesis pathway.FMT increased estradiol and insulin-like growth factor 1 but decreased progesterone dynamically.FMT also increased the expression of the EGD-related genes estrogen receptor 1 gene,epithelial cadherin,and forkhead box protein A2.There is a significant correlation between FMT-shifted gut microbes and EGD-related indices.Conclusion:Sexually matured Meishan gilts achieved a superior EGD than LxY gilts.Meanwhile,gut microbiota contribute to the EGD potentially via regulating of steroid hormones during the ovary-dependent period.
基金supported by the National Natural Science Foundation of China(32230099 and 31925037)Hubei Hongshan Laboratory(2021hszd018).
文摘Background The mechanism by which Meishan(MS)sows are superior to white crossbred sows in ovarian follicle development remains unclear.Given gut microbiota could regulate female ovarian function and reproductive capacity,this study aimed to determine the role of gut microbiota-ovary axis on follicular development in sows.Methods We compared the ovarian follicular development,gut microbiota,plasma metabolome,and follicular fluid metabolome between MS and Landrace×Yorkshire(L×Y)sows.A H_(2)O_(2)-induced cell apoptosis model was used to evaluate the effects of multi-omics identified metabolites on the apoptosis of porcine ovarian granulosa cells in vitro.Results Compared with L×Y sows,MS sows have greater ovary weight and improved follicular development,including the greater counts of large follicles of diameter≥5 mm,secondary follicles,and antral follicles,but lesser atretic follicles.The ovarian granulosa cells in MS sows had alleviated apoptosis,which was indicated by the increased BCL-2,decreased caspases-3,and decreased cleaved caspases-3 than in L×Y sows.The ovarian follicular fluid of MS sows had higher concentrations of estradiol,progesterone,follicle-stimulating hormone,luteinizing hormone,and insulin like growth factor 1 than L×Y sows.Gut microbiota of MS sows formed a distinct cluster and had improved alpha diversity,including increased Shannon and decreased Simpson than those of L×Y sows.Corresponding to the enhanced function of carbohydrate metabolism and elevated short-chain fatty acids(SCFAs)in feces,the differential metabolites in plasma between MS and L×Y sows are also mainly enriched in pathways of fatty acid metabolism.There were significant correlations among SCFAs with follicular development,ovarian granulosa cells apoptosis,and follicular fluid hormones,respectively.Noteworthily,compared with L×Y sows,MS sows had higher follicular fluid SCFAs concentrations which could ameliorate H_(2)O_(2)-induced porcine granulosa cells apoptosis in vitro.Conclusion MS sows have more secondary and antral follicles,but fewer atretic follicles and apoptotic ovarian granulosa cells,as well as harbored a distinctive gut microbiota than L×Y sows.Gut microbiota may participate in regulating ovarian follicular development via SCFAs affecting granulosa cells apoptosis in sows.
基金supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2020SP007)Project on Exploring Interdisciplinary Frontier from Chinese Academy of Sciences:Artificial Intelligence Oceanography,2022,the Innovation Group Project of the Southern Marine Science and Engineering Guangdong(Zhuhai)under contract No.311020004the National Key Research and Development Program of China(2017YFA0604100,2016YFC1402004,and 2017YFC1404200)for supporting this research.
文摘With the availability of petabytes of oceanographic observations and numerical model simulations,artificial intelligence(AI)tools are being increasingly leveraged in a variety of applications.In this paper,these applications are reviewed from the perspectives of identifying,forecasting,and parameterizing ocean phenomena.Specifically,the usage of AI algorithms for the identification of mesoscale eddies,internal waves,oil spills,sea ice,and marine algae are discussed in this paper.Additionally,AI-based forecasting of surface waves,the El Niño Southern Oscillation,and storm surges is discussed.This is followed by a discussion on the usage of these schemes to parameterize oceanic turbulence and atmospheric moist physics.Moreover,physics-informed deep learning and neural networks are discussed within an oceanographic context,and further applications with ocean digital twins and physics-constrained AI algorithms are described.This review is meant to introduce beginners and experts in the marine sciences to AI methodologies and stimulate future research toward the usage of causality-adherent physics-informed neural networks and Fourier neural networks in oceanography.