Aiming at the land cover (features) recognition of outdoor sports venues (football field, basketball court, tennis court and baseball field), this paper proposed a set of object recognition methods and technical flow ...Aiming at the land cover (features) recognition of outdoor sports venues (football field, basketball court, tennis court and baseball field), this paper proposed a set of object recognition methods and technical flow based on Mask R-CNN. Firstly, through the preprocessing of high spatial resolution remote sensing imagery (HSRRSI) and collecting the artificial samples of outdoor sports venues, the training data set required for object recognition of land cover features was constructed. Secondly, the Mask R-CNN was used as the basic training model to be adapted to cope with outdoor sports venues. Thirdly, the recognition results were compared with the four object-oriented machine learning classification methods in eCognition®. The experiment results of effectiveness verification show that the Mask R-CNN is superior to traditional methods not only in technical procedures but also in outdoor sports venues (football field, basketball court, tennis court and baseball field) recognition results, and it achieves the precision of 0.8927, a recall of 0.9356 and an average precision of 0.9235. Finally, from the aspect of practical engineering application, using and validating the well-trained model, an empirical application experiment was performed on the HSRRSI of Xicheng and Daxing District of Beijing respectively, and the generalization ability of the trained model of Mask R-CNN was thoroughly evaluated.展开更多
The effective disposal of daily city infrastructure cases is an important issue for urban management. To more effectively utilize a large amount of historical cases data collected and accumulated in the urban grid man...The effective disposal of daily city infrastructure cases is an important issue for urban management. To more effectively utilize a large amount of historical cases data collected and accumulated in the urban grid management system, and to analyze their spatial distribution pattern information for city managers, this study used the comparative kernel density analysis method in two types of cases (i.e. power facilities and traffic guardrail) in Xicheng District, Beijing for the year 2016 and 2017. This research analyzes them at different scales (300 m, 600 m, 1,200 m), and the experiment results show that the method of comparative kernel density analysis is able to provide an intuitively spatial visualization distribution analysis of city infrastructure related cases. The quantitative information of spatial agglomeration degree is helpful for city managers making decision.展开更多
文摘Aiming at the land cover (features) recognition of outdoor sports venues (football field, basketball court, tennis court and baseball field), this paper proposed a set of object recognition methods and technical flow based on Mask R-CNN. Firstly, through the preprocessing of high spatial resolution remote sensing imagery (HSRRSI) and collecting the artificial samples of outdoor sports venues, the training data set required for object recognition of land cover features was constructed. Secondly, the Mask R-CNN was used as the basic training model to be adapted to cope with outdoor sports venues. Thirdly, the recognition results were compared with the four object-oriented machine learning classification methods in eCognition®. The experiment results of effectiveness verification show that the Mask R-CNN is superior to traditional methods not only in technical procedures but also in outdoor sports venues (football field, basketball court, tennis court and baseball field) recognition results, and it achieves the precision of 0.8927, a recall of 0.9356 and an average precision of 0.9235. Finally, from the aspect of practical engineering application, using and validating the well-trained model, an empirical application experiment was performed on the HSRRSI of Xicheng and Daxing District of Beijing respectively, and the generalization ability of the trained model of Mask R-CNN was thoroughly evaluated.
文摘The effective disposal of daily city infrastructure cases is an important issue for urban management. To more effectively utilize a large amount of historical cases data collected and accumulated in the urban grid management system, and to analyze their spatial distribution pattern information for city managers, this study used the comparative kernel density analysis method in two types of cases (i.e. power facilities and traffic guardrail) in Xicheng District, Beijing for the year 2016 and 2017. This research analyzes them at different scales (300 m, 600 m, 1,200 m), and the experiment results show that the method of comparative kernel density analysis is able to provide an intuitively spatial visualization distribution analysis of city infrastructure related cases. The quantitative information of spatial agglomeration degree is helpful for city managers making decision.