期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
柴达木盆地北缘早古生代高压—超高压变质带中发现典型超高压矿物——柯石英 被引量:225
1
作者 杨经绥 宋述光 +9 位作者 许志琴 吴才来 史仁灯 张建新 李海兵 万渝生 刘焰 邱海峻 刘福来 shigenori maruyama 《地质学报》 EI CAS CSCD 北大核心 2001年第2期175-179,共5页
从都兰北带榴辉岩的片麻岩围岩的锆石中发现了柯石英包裹体和石墨包裹体,说明该超高压带的峰期变质作用已达柯石英稳定区间(>2.8GPa)但小于金刚石的稳定区间(<3.5GPa),从而确定了柴达木盆地北缘存在早古生代超高压变质作用和陆-... 从都兰北带榴辉岩的片麻岩围岩的锆石中发现了柯石英包裹体和石墨包裹体,说明该超高压带的峰期变质作用已达柯石英稳定区间(>2.8GPa)但小于金刚石的稳定区间(<3.5GPa),从而确定了柴达木盆地北缘存在早古生代超高压变质作用和陆-陆碰撞作用,为中国中部存在一条横贯东西的早古生代(大致500~400Ma)高压超高压变质带的推断提供了新的关键性证据。 展开更多
关键词 超高压变质带 柯石英 柴达木盆地 榴辉岩 早古生代 包裹体
在线阅读 下载PDF
Fossil Association from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area,Hubei,South China 被引量:11
2
作者 GUO Junfeng LI Yong +7 位作者 HAN Jian ZHANG Xingliang ZHANG Zhifei OU Qiang LIU Jianni SHU Degan shigenori maruyama Tsuyoshi KOMIYA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第6期1124-1132,共9页
Apart from previously reported Small Shelly Fossils (SSFs), a macroscopic fossil assemblage, comprising abundant algae, cone-shaped tubular fossil forms, and probable impressions of a megascopic metazoan, comes from... Apart from previously reported Small Shelly Fossils (SSFs), a macroscopic fossil assemblage, comprising abundant algae, cone-shaped tubular fossil forms, and probable impressions of a megascopic metazoan, comes from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges area of western Hubei Province, south China. The visible fossils are preserved in thinlaminated siltstone or muddy siltstone intercalated between 8-15 ram-thick carbonate deposits, probably representing sedimentary settings of a constrained local depression in the shallow water carbonate platform during the Early Cambrian Meishucunian Stage. The macroscopic fossil association provides significant fossil evidence about the evolution of life from the late Precambrian to the 'Cambrian explosion' interval. 展开更多
关键词 macrofossil association Yanjiahe Formation Lower Cambrian Yangtze Gorges Area Hubei Province
在线阅读 下载PDF
Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment 被引量:9
3
作者 shigenori maruyama M.Santosh Shintaro Azuma 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1033-1048,共16页
When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the midd... When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga). 展开更多
关键词 Initiation of plate tectonics ABEL Bombardment ECLOGITIZATION Stagnant lid tectonics Primordial continents
在线阅读 下载PDF
Secular change in lifetime of granitic crust and the continental growth: A new view from detrital zircon ages of sandstones 被引量:6
4
作者 Hikaru Sawada Yukio Isozaki +2 位作者 Shuhei Sakata Takafumi Hirata shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1099-1115,共17页
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previousl... U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity. 展开更多
关键词 Detrital zircon U-Pb age Continental growth Subduction erosion Preservation bias
在线阅读 下载PDF
Triggers and sources of volatile-bearing plumes in the mantle transition zone 被引量:4
5
作者 Inna Safonova Konstantin Litasov shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第5期679-685,共7页
The paper discusses generation of volatile-bearing plumes in the mantle transition zone(MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic serie... The paper discusses generation of volatile-bearing plumes in the mantle transition zone(MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia.The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle.Most probable sources of volatiles are the hyclrated/carbonated sediments and basalts and serpentinite of oceanic slabs,which can be subducted down to the deep mantle.Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle,which can serve source of heat in the MTZ.The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling,to produce OIB-type mafic and felsic melts,respectively. 展开更多
关键词 Asis Pacific-type convergent margin Continental cr
在线阅读 下载PDF
Origins of building blocks of life: A review 被引量:2
6
作者 Norio Kitadai shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1117-1153,共37页
How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or em... How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements(N and P) on the Hadean Earth, abiotic synthesis of life's building blocks(amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules(peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of(1) reductive gas phase,(2) alkaline pH,(3) freezing temperature,(4)fresh water,(5) dry/dry-wet cycle,(6) coupling with high energy reactions,(7) heating-cooling cycle in water, and(8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intratransportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life. 展开更多
关键词 ASTROBIOLOGY BIOCHEMISTRY Chemical evolution Extraterrestrial life Hadean Earth Hydrothermal systems
在线阅读 下载PDF
A possible anorthositic continent of early Mars and the role of planetary size for the inception of Earth-like life 被引量:2
7
作者 James M.Dohm shigenori maruyama +1 位作者 Motoyuki Kido Victor R.Baker 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1085-1098,共14页
The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant... The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge. 展开更多
关键词 Anorthosite on Mars MOON Habitable trinity Super-Earth Plate tectonics Origin of life
在线阅读 下载PDF
Origin of the Earth:A proposal of new model called ABEL 被引量:10
8
作者 shigenori maruyama Toshikazu Ebisuzaki 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期253-274,共22页
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at... The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth. 展开更多
关键词 Origin of Earth and life Advent of bin-elements (ABEL)Origin of water on the Earth ABEL Bombardment Habitable Trinity planet Initiation of plate tectonics
在线阅读 下载PDF
The second continent:Existence of granitic continental materials around the bottom of the mantle transition zone 被引量:5
9
作者 Kenji Kawai Shinji Yamamoto +1 位作者 Taku Tsuchiya shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第1期1-6,共6页
It has been thought that granitic crust, having been formed on the surface, must have survived through the Earth's evolution because of its buoyancy. At subduction zones continental crust is predominantly created by ... It has been thought that granitic crust, having been formed on the surface, must have survived through the Earth's evolution because of its buoyancy. At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction, subduction erosion, and continental subduction. Granitic rocks, the major constituent of the continental crust, are lighter than the mantle at depths shallower than 270 km, but we show here, based on first principles calcu- lations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone, and thus can be subducted in the depth range of 270-660 km. This suggests that there can be two reservoirs of granitic material in the Earth, one on the surface and the other at the base of the mantle transition zone (MTZ). The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust. Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle. This could explain the anomalous seismic-wave velocities observed around 660 km depth. The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation, chemical discontinuities between granitic material and the surrounding mantle, or a combination thereof. 展开更多
关键词 Continental growthGraniteFirst principlesMantle transition zoneTectonicsGeodynamics
在线阅读 下载PDF
High-reliability zircon separation for hunting the oldest material on Earth: An automatic zircon separator with image-processing/microtweezers-manipulating system and double-step dating 被引量:1
10
作者 Yukio Isozaki Shinji Yamamoto +7 位作者 Shuhei Sakata Hideyuki Obayashi Takafumi Hirata Ken-ichi Obori Toshinori Maebayashi Satoshi Takeshima Toshikazu Ebisuzaki shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1073-1083,共11页
Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the effi... Despite the recent development in radiometric dating of numerous zircons by LA-ICPMS, mineral separation still remains a major obstacle, particularly in the search for the oldest material on Earth. To improve the efficiency in zircon separation by an order of magnitude, we have designed/developed a new machine-an automatic zircon separator(AZS). This is designed particularly for automatic pick-up of100 μm-sized zircon grains out of a heavy mineral fraction after conventional separation procedures. The AZS operates in three modes:(1) image processing to choose targeted individual zircon grains out of all heavy minerals spread on a tray,(2) automatic capturing of the individual zircon grains with microtweezers, and(3) placing them one-by-one in a coordinated alignment on a receiving tray. The automatic capturing was designed/created for continuous mineral selecting without human presence for many hours. This software also enables the registration of each separated zircon grain for dating, by recording digital photo-image, optical(color) indices, and coordinates on a receiving tray. We developed two new approaches for the dating; i.e.(1) direct dating of zircons selected by LA-ICPMS without conventional resin-mounting/polishing,(2) high speed U-Pb dating, combined with conventional sample preparation procedures using the new equipment with multiple-ion counting detectors(LA-MIC-ICPMS).With the first approach, Pb-Pb ages obtained from the surface of a mineral were crosschecked with the interior of the same grain after resin-mounting/polishing. With the second approach, the amount of time required for dating one zircon grain is ca. 20 s, and a sample throughput of 〉150 grains per hour can be achieved with sufficient precision(ca. 0.5%).We tested the practical efficiency of the AZS, by analyzing an Archean Jack Hills conglomerate in Western Australia with the known oldest(〉4.3 Ga) zircon on Earth. Preliminary results are positive; we were able to obtain more than 194 zircons that are over 4.0 Ga out of ca. 3800 checked grains, and 9 grains were over 4300 Ma with the oldest at 4371 ± 7 Ma. This separation system by AZS, combined with the new approaches, guarantees much higher yield in the hunt for old zircons. 展开更多
关键词 HADEAN ZIRCON U-Pb dating LA-ICPMS Automatic mineral separator Primordial crust
在线阅读 下载PDF
Formation of anorthosite on the Moon through magma ocean fractional crystallization 被引量:2
11
作者 Tatsuyuki Arai shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期299-308,共10页
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a t... Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 〉95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 〉 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form. 展开更多
关键词 Moon Anorthosite Magma ocean MELTS Fractional crystallization
在线阅读 下载PDF
Nuclear geyser model of the origin of life:Driving force to promote the synthesis of building blocks of life 被引量:2
12
作者 Toshikazu Ebisuzaki shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期275-298,共24页
We propose the nuclear geyser model to elucidate an optimal site to bear the first life.Our model overcomes the difficulties that previously proposed models have encountered.Nuclear geyser is a geyser driven by a natu... We propose the nuclear geyser model to elucidate an optimal site to bear the first life.Our model overcomes the difficulties that previously proposed models have encountered.Nuclear geyser is a geyser driven by a natural nuclear reactor,which was likely common in the Hadean Earth,because of a much higher abundance of 235U as nuclear fuel.The nuclear geyser supplies the following:(1)high-density ionizing radiation to promote chemical chain reactions that even tar can be used for intermediate material to restart chemical reactions,(2)a system to maintain the circulation of material and energy,which includes cyclic environmental conditions(warm/cool,dry/wet,etc.)to enable to produce complex organic compounds,(3)a lower temperature than 100℃ as not to break down macromolecular organic compounds,(4)a locally reductive environment depending on rock types exposed along the geyser wall,and(5)a container to confine and accumulate volatile chemicals.These five factors are the necessary conditions that the birth place of life must satisfy.Only the nuclear geyser can meet all five,in contrast to the previously proposed birth sites,such as tidal flat,submarine hydrothermal vent,and outer space.The nuclear reactor and associated geyser,which maintain the circulations of material and energy with its surrounding environment,are regarded as the nuclear geyser system that enables numerous kinds of chemical reactions to synthesize complex organic compounds,and where the most primitive metabolism could be generated. 展开更多
关键词 Origin of life Chemical evolution Natural nuclear reactor Aqueous electron Radiation chemistry
在线阅读 下载PDF
Reactions between olivine and CO2-rich seawater at 300℃:Implications for H2 generation and CO2 sequestration on the early Earth 被引量:2
13
作者 Hisahiro Ueda Yusuke Sawaki shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期387-396,共10页
To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth,we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 C and 500 bars.... To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth,we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 C and 500 bars.During the experiments,the total carbonic acid concentration(∑XO2) in the fluid decreased from approximately 65 to 9 mmol/kg.Carbonate minerals,magnesite,and subordinate amount of dolomite were formed via the water-rock interaction.The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h,which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature.As seen in previous hydrothermal experiments using komatiite,ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration.Considering carbonate mineralogy over the temperature range of natural hydrothermal fields,H2 generation is likely suppressed at temperatures below approximately 300℃ due to the formation of the Mg-bearing carbonates.Nevertheless,H_2 concentration in fluid at 300℃ could be still high due to the temperature dependency of magnetite stability in ultramafic systems.Moreover,the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth.Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle.This process may have reduced the huge initial amount of CO2 on the surface of the early Earth.Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle,even in hot subduction zones. 展开更多
关键词 Olivine CO2-rich condition Early Earth Hydrothermal alteration Serpentinization Experiment
在线阅读 下载PDF
Growth, Duplication and Lateral Mutual Compressive Deformation of Akouemma hemisphaeria on the Seafloor of Okondja Basin at 2.2 Ga (Gabon) 被引量:1
14
作者 Ambroise Edou-Minko Mathieu Moussavou +13 位作者 Tomohiko Sato Yusuke Sawaki Simplice Ndong Ondo Richard Maire Guillaume Fleury Michel Mbina Mounguengui Anders Kaestner Richard Ortega Stéphane Roudeau Asuncion Carmona Makaya Mvoubou Benjamin Musavu Moussavou Osamu Sasaki shigenori maruyama 《International Journal of Geosciences》 2017年第9期1172-1191,共20页
A colony of macro-fossils Akouemma hemisphaeria has been described in the Paleoproterozoic sedimentary basin of Okondja, Gabon. These fossils are classified into two groups according to their spheroidal or elongated f... A colony of macro-fossils Akouemma hemisphaeria has been described in the Paleoproterozoic sedimentary basin of Okondja, Gabon. These fossils are classified into two groups according to their spheroidal or elongated forms. The spheroidal shapes are similar, have a tripartite structure with two hemispheres and a median disc and gradually pass to the elongated forms. These elongated forms have a pronounced bipartite tendency to two “hemispheres” separated by a median surface, and often have several ovoid “pieces” attached. The elongated specimens show both lateral growth marks and signs of fission. Growth marks are characterized by unidirectional homogeneous side elongations and lateral bud-like protuberances. The signs of fission are marked by circular furrows perpendicular to the direction of elongation, called “constriction furrows” with varying depths depending on the degree of fission of the specimen and internal vertical “division planes”. All of these ovoid and elongated specimens have undergone significant initial deformations due mainly to mutual lateral compressions in tabular beds. The Akouemma hemisphaeria macro-organisms, which were primitive probably sessile organisms, lived on the seafloor. They provide the oldest known record of macro-organisms on Earth having vegetative growth and asexual reproduction by budding, lateral elongation and fission. Their mutual lateral deformations would result from their growth. 展开更多
关键词 PALEOPROTEROZOIC Francevillian Group Okondja BASIN Akouemma hemisphaeria GROWTH DUPLICATION
在线阅读 下载PDF
Nine requirements for the origin of Earth’s life:Not at the hydrothermal vent, but in a nuclear geyser system
15
作者 shigenori maruyama Ken Kurokawa +3 位作者 Toshikazu Ebisuzaki Yusuke Sawaki Konomi Suda M. Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第4期1337-1357,共21页
The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an ener... The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an energy source(ionizing radiation and thermal energy);(2)a supply of nutrients(P.K.REE.etc.);(3)a supply of life-constituting major elements;(4)a high concentration of reduced gases such as CH4,HCN and NH3;(5)dry-wet cycles to create membranes and polymerize RNA;(6)a non-toxic aqueous environment;(7)Na-poor water;(8)highly diversified environments,and(9)cyclic conditions,such as dayto-night,hot-to-cold etc.Based on these nine requirements,we evaluate previously proposed locations for the origin of Earth’s life,including:(1)Darwin’s"warm little pond",leading to a"prebiotic soup"for life;(2)panspermia or Neo-panspermia(succession model of panspermia);(3)transportation from/through Mars;(4)a deepsea hydrothermal system;(5)an on-land subduct ion-zone hot spring,and(6)a geyser systems driven by a natural nuclear reactor.We conclude that location(6)is the most ideal candidate for the o rigin point for Earth’s life because of its efficiency in continuously supplying both the energy and the necessary materials for life,thereby maintaining the essential"cradle"for its initial development.We also emphasize that falsifiable working hypothesis provides an important tool to evaluate one of the biggest mysteries of the universe-the origin of life. 展开更多
关键词 ORIGIN of Earth's LIFE NUCLEAR geyser SYSTEM EMERGENCE and evolution of LIFE Falsifiability
在线阅读 下载PDF
High-pressure phase transitions of anorthosite crust in the Earth's deep mantle
16
作者 Masayuki Nishi Steeve Gréaux +4 位作者 Shigehiko Tateno Yasuhiro Kuwayama Kenji Kawai Tetsuo Irifune shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1859-1870,共12页
We investigated phase relations, mineral chemistry, and density of lunar highland anorthosite at conditions up to 125 GPa and 2000 K. We used a multi-anvil apparatus and a laser-heated diamond-anvil cell for this purp... We investigated phase relations, mineral chemistry, and density of lunar highland anorthosite at conditions up to 125 GPa and 2000 K. We used a multi-anvil apparatus and a laser-heated diamond-anvil cell for this purpose. In-situ X-ray diffraction measurements at high pressures and composition analysis of recovered samples using an analytical transmission electron microscope showed that anorthosite consists of garnet,CaAl_4Si_2O_(11)-rich phase(CAS phase), and SiO_2 phases in the upper mantle and the mantle transition zone.Under lower mantle conditions, these minerals transform to the assemblage of bridgmanite, Ca-perovskite,corundum, stishovite, and calcium ferrite-type aluminous phase through the decomposition of garnet and CAS phase at around 700 km depth. Anorthosite has a higher density than PREM and pyrolite in the upper mantle, while its density becomes comparable or lower under lower mantle conditions. Our results suggest that ancient anorthosite crust subducted down to the deep mantle was likely to have accumulated at660-720 km in depth without coming back to the Earth's surface. Some portions of the anorthosite crust might have circulated continuously in the Earth's deep interior by mantle convection and potentially subducted to the bottom of the lower mantle when carried within layers of dense basaltic rocks. 展开更多
关键词 ANORTHOSITE Phase transformation Multi-anvil apparatus Diamond-anvil cell MANTLE dynamics
在线阅读 下载PDF
United theory of biological evolution:Disaster-forced evolution through Supernova,radioactive ash fall-outs,genome instability,and mass extinctions
17
作者 Toshikazu Ebisuzaki shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期103-119,共17页
We present the disaster-forced biological evolution model as a general framework that includes Darwinian "phylogenic gradualism", Eldredge-Gould's "punctuated equilibrium", mass extinctions, and allopatric, parap... We present the disaster-forced biological evolution model as a general framework that includes Darwinian "phylogenic gradualism", Eldredge-Gould's "punctuated equilibrium", mass extinctions, and allopatric, parapatric, and sympatric speciation. It describes how reproductive isolation of organisms is established through global disasters due to supernova encounters and local disasters due to radioactive volcanic ash fall-outs by continental alkaline volcanism. Our new evolution model uniquely highlights three major factors of disaster-forced speciation: enhanced mutation rate by higher natural radiation level, smaller population size, and shrunken habitat size (i.e., isolation among the individual pop- ulations). We developed a mathematical model describing speciation of a half-isolated group from a parental group, taking into account the population size (Ne), immigration rate (m), and mutation rate (μ). The model gives a quantitative estimate of the speciation, which is consistent with the observations of speciation speed. For example, the speciation takes at least 105 generations, if mutation rate is less than 10 3 per generation per individual. This result is consistent with the previous studies, in which μ is assumed to be 10 3-10-5. On the other hand, the speciation is much faster (less than l0S generations) for the case that μ is as large as 0.1 in parapatric conditions (m 〈 μ). Even a sympatric (m ~ 1 ) speciatiou can occur within 103 generations, if mutation rate is very high (μ- 1 mutation per individual per generation), and if Ne 〈 20-30. Such a high mutation rate is possible during global disasters due to supernova encounters and local disasters due to radioactive ash fall-outs. They raise natural radiation level by a factor of 100-1000. Such rapid speciation events can also contribute to macro-evolution during mass extinction events, such as observed during the Cambrian explosion of biodiversity. A similar rapid speciation (though in a much smaller scale) also has been undergoing in cichlid fishes and great African apes in the last several tens of thousand years in the current African rift valley, including the origin of humankind due to the radioactive ash fall-outs bv continental alkaline volcanism. 展开更多
关键词 SPECIATION Supernova encounter Continental alkaline volcanism CICHLID Great African ape Cambrian explosion
在线阅读 下载PDF
A high-resolution chemostratigraphy of post-Marinoan Cap Carbonate using drill core samples in the Three Gorges area, South China
18
作者 Hisatoshi Sato Miyuki Tahata +6 位作者 Yusuke Sawaki shigenori maruyama Naohiro Yoshida Degan Shu Jian Han Yong Li Tsuyoshi Komiya 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第4期663-671,共9页
Cap Carbonates overlie the Marinoan Snowball Earth-related glacial diamictite, and possibly record the drastic surface environmental change and biological evolution after the Snowball Earth. We conducted on-land drill... Cap Carbonates overlie the Marinoan Snowball Earth-related glacial diamictite, and possibly record the drastic surface environmental change and biological evolution after the Snowball Earth. We conducted on-land drilling from the Liantuo Formation, through the Nantuo, to the lower Doushantuo Formation in the Three Gorges area of South China to collect fresh, continuous samples in the Three Gorges area. We obtained high-resolution chemostratigraphies of ~13C and 6180 values of carbonates from the topmost part of the Nantuo Formation to the Cap Carbonate, in order to decode the detailed surface environmental change in the shallow marine setting. The δ3C chemostratigraphy possesses some unique characteristics: (1) stable δ13C values as a whole, but ubiquitous low δ13C anomalies through the Cap Carbonate, (2) increase of the δ13C values from -3 to +5‰ across the C2/C3 boundary, (3) no δ13C anomaly between the CI and C2 boundary, and (4) presence of an anomalous high δ13C value (+2.3%0) and a faint positive correlation between δ13C and δ18O values in the C1 unit. Evidence of quite low δ13C anomalies (with a nadir of -41‰), ubiquitous negative δ13C anomalies through the Cap Carbonate, and a high 613C anomaly accompanied with a faint positive correlation between δ13C and δ18O values in the C1 unit supports decomposition and formation of methane hydrate during Cap Carbonate formation. The drastic increase of δ13C values from the upper C2 to C3 units in- dicates enhancement of primary productivity and organic carbon burial, possibly due to high continental fluxes after the Snowball Earth event, evidenced by high Sr isotope values. The increase is restricted to the proximal side of the inner shelf in South China, and the timing of the increase of δ13C values of carbonates is earlier at Three Gorges area than any other area, suggesting that the enhancement of primary productivity started in the proximal environment because of higher continental influxes. The increase in oxygen contents of seawater due to the enhanced primary productivity possibly resulted in the emergence of multicellular animals soon after Cap Carbonate deposition. 展开更多
关键词 Cap Carbonate EDIACARAN Marinoan Snowball Earth Carbon isotope chemostratigraphy Methane hydrate
在线阅读 下载PDF
Three-step modernization of the ocean:Modeling of carbon cycles and the revolution of ecological systems in the Ediacaran/Cambrian periods
19
作者 Miyuki Tahata Yusuke Sawaki +5 位作者 Yuichiro Ueno Manabu Nishizawa Naohiro Yoshida Toshikazu Ebisuzaki Tsuyoshi Komiya shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期121-136,共16页
Important ecological changes of the Earth (oxidization of the atmosphere and the ocean) increase in nutrient supply due to the break-up of the super continent (Rodinia) and the appearance of multi-cellular organis... Important ecological changes of the Earth (oxidization of the atmosphere and the ocean) increase in nutrient supply due to the break-up of the super continent (Rodinia) and the appearance of multi-cellular organisms (macroscopic algae and metazoan) took place in the Ediacaran period, priming the Cambrian explosion. The strong perturbations in carbon cycles in the ocean are recorded as excursions in carbonate and organic carbon isotope ratio (δ13Ccarb and δ13Corg) from the Ediacaran through early Cambrian periods. The Ediacaran-early Cambrian sediment records of δ13Ccarb and δ13Corg, obtained from the drill-core samples in Three Gorges in South China, are compared with the results of numerical simulation of a sim- ple one-zone model of the carbon cycle of the ocean, which has two reservoirs (i.e., dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC). The fluxes from the reservoirs are assumed to be proportional to the mass of the carbon reservoirs. We constructed a model, referred to here as the Best Fit Model (BFM), which reproduce δ13Ccarb and δ13Corg records in the Ediacaran-early Cambrian period noted above. BFM reveals that the Shuram excursion is related to three major changes in the carbon cycle or the global ecological system of the Earth: (1) an increase in the coefficient of remineralization by a factor of ca. 100, possibly corresponding to a change in the dominant metabolism from anaerobic respiration to aerobic respiration, (2) an increase of carbon fractionation index from 25‰, to 33‰, possibly corresponding to the change in the primary producer from rock-living cyanobacteria to free-living macro algae, and (3) an in- crease in the coefficient of the organic carbon burial by a factor of ca. 100, possibly corresponding to the onset of a biological pump driven by the flourishing metazoan and zooplankton. The former two changes took place at the start of the Shuram excursion, while the third occurred at the end of the Shuram excursion. The other two excursions are explained by the tentative decrease in primary production due to cold periods, which correspond to the Gaskiers (ca. 580 Ma) and Bikonor (ca. 542 Ma) glaciations. 展开更多
关键词 Carbon cycle change Carbon isotope ratio Ediacaran to Cambrian Oxygen level Evolution of life
在线阅读 下载PDF
Habitable Trinity
20
作者 James M.Dohm shigenori maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期95-101,共7页
Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass (supplier... Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass (supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body consists of C, O, H, N and other various nutrients, and therefore, the presence of water, only, is not a sufficient condition. Habitable Trinity environment must he maintained to supply necessary components for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars, Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies. 展开更多
关键词 Habitable Trinity OCEAN ATMOSPHERE Landmass SUN
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部