期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influence of Atmospheric Particulate Matter on Ozone in Nanjing,China:Observational Study and Mechanistic Analysis 被引量:43
1
作者 Yawei QU Tijian wang +7 位作者 Yanfeng CAI shekou wang Pulong CHEN Shu LI Mengmeng LI Cheng YUAN Jing wang Shaocai XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第11期1381-1395,共15页
Particulate matter with diameters of 2.5 μm or smaller(PM_(2.5)) and ozone(O_3) are major pollutants in the urban atmosphere. PM_(2.5) can affect O_3 by altering the photolysis rate and heterogeneous reactions. Howev... Particulate matter with diameters of 2.5 μm or smaller(PM_(2.5)) and ozone(O_3) are major pollutants in the urban atmosphere. PM_(2.5) can affect O_3 by altering the photolysis rate and heterogeneous reactions. However, these two processes and their relative importance remain uncertain. In this paper, with Nanjing in China as the target city, we investigate the characteristics and mechanism of interactions between particles and O_3 based on ground observations and numerical modeling.In 2008, the average concentrations of PM_(2.5) and O_3 at Caochangmen station are 64.6 ± 47.4 μg m^(-3) and 24.6 ± 22.8 ppb,respectively, while at Pukou station they are 94.1 ± 63.4 μg m^(-3) and 16.9 ± 14.9 ppb. The correlation coefficient between PM_(2.5) and O_3 is -0.46. In order to understand the reaction between PM_(2.5) and O_3, we construct a box model, in which an aerosol optical property model, ultraviolet radiation model, gas phase chemistry model, and heterogeneous chemistry model,are coupled. The model is employed to investigate the relative contribution of the aforementioned two processes, which vary under different particle concentrations, scattering capability and VOCs/NOxratios(VOCs: volatile organic compounds;NOx: nitric oxide and nitrogen dioxide). Generally, photolysis rate effect can cause a greater O_3 reduction when the particle concentrations are higher, while heterogeneous reactions dominate O_3 reduction with low-level particle concentrations.Moreover, in typical VOC-sensitive regions, O_3 can even be increased by heterogeneous reactions. In Nanjing, both processes lead to O_3 reduction, and photolysis rate effect is dominant. Our study underscores the importance of photolysis rate effect and heterogeneous reactions for O_3, and such interaction processes should be fully considered in future atmospheric chemistry modeling. 展开更多
关键词 PM OZONE PHOTOLYSIS HETEROGENEOUS reaction NANJING URBAN ATMOSPHERE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部