The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e...The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.展开更多
The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy ...The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method.It also occurs on the sea floor as opposed to at the functionality.A set of dynamical partial differential equations(PDEs)in this article exemplify an unconfined aquifer flow implication.Thismethodology can accurately simulate climatological intrinsic waves,so the ripples are spread across a large demographic zone.The Aboodh transform merged with the mechanism of Adomian decomposition is implemented to obtain the fuzzified FBSQe in R,R^(n) and(2nth)-order involving generalized Hukuhara differentiability.According to the system parameter,we classify the qualitative features of the Aboodh transform in the fuzzified Caputo and Atangana-Baleanu-Caputo fractional derivative formulations,which are addressed in detail.The illustrations depict a comparison analysis between the both fractional operators under gH-differentiability,as well as the appropriate attributes for the fractional-order and unpredictability factorsσ∈[0,1].A statistical experiment is conducted between the findings of both fractional derivatives to prevent changing the hypothesis after the results are known.Based on the suggested analyses,hydrodynamic technicians,as irrigation or aquifer quality experts,may be capable of obtaining an appropriate storage intensity amount,including an unpredictability threshold.展开更多
In this research article,we shall give some reverse Arithmetic-Geometric mean inequalities for unital positive linear maps on Hilbert space operators under some different conditions.Our results are sharper and more pr...In this research article,we shall give some reverse Arithmetic-Geometric mean inequalities for unital positive linear maps on Hilbert space operators under some different conditions.Our results are sharper and more precise as compared to some recent published results.Moreover,we shall present refinements of the Lin conjecture.展开更多
文摘The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.
文摘The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method.It also occurs on the sea floor as opposed to at the functionality.A set of dynamical partial differential equations(PDEs)in this article exemplify an unconfined aquifer flow implication.Thismethodology can accurately simulate climatological intrinsic waves,so the ripples are spread across a large demographic zone.The Aboodh transform merged with the mechanism of Adomian decomposition is implemented to obtain the fuzzified FBSQe in R,R^(n) and(2nth)-order involving generalized Hukuhara differentiability.According to the system parameter,we classify the qualitative features of the Aboodh transform in the fuzzified Caputo and Atangana-Baleanu-Caputo fractional derivative formulations,which are addressed in detail.The illustrations depict a comparison analysis between the both fractional operators under gH-differentiability,as well as the appropriate attributes for the fractional-order and unpredictability factorsσ∈[0,1].A statistical experiment is conducted between the findings of both fractional derivatives to prevent changing the hypothesis after the results are known.Based on the suggested analyses,hydrodynamic technicians,as irrigation or aquifer quality experts,may be capable of obtaining an appropriate storage intensity amount,including an unpredictability threshold.
文摘In this research article,we shall give some reverse Arithmetic-Geometric mean inequalities for unital positive linear maps on Hilbert space operators under some different conditions.Our results are sharper and more precise as compared to some recent published results.Moreover,we shall present refinements of the Lin conjecture.