期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices
1
作者 Zhen-Hua Tang Wei-Bin Zhu +4 位作者 Jun-Zhang Chen Yuan-Qing Li Pei Huang Kin Liao shao-yun fu 《Nano Materials Science》 EI CAS CSCD 2023年第3期319-328,共10页
Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials ... Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management. 展开更多
关键词 GRAPHENE Bamboo fibers MICROSPHERES Pressure sensors Joule heating devices
在线阅读 下载PDF
Preface of“Trends in Nanomaterials and Nanocomposites:Fundamentals,Modelling and Applications”--Festschrift in honor of Prof Yiu-Wing Mai's 75th birthday
2
作者 Long-Cheng Tang shao-yun fu 《Nano Materials Science》 EI CAS CSCD 2022年第2期61-63,共3页
Prof.Yiu-Wing Mai has made many significant and sustained contributions pushing the boundaries of science and engineering of advanced materials,especially nanomaterials and nanocomposites in recent two decades.This Fe... Prof.Yiu-Wing Mai has made many significant and sustained contributions pushing the boundaries of science and engineering of advanced materials,especially nanomaterials and nanocomposites in recent two decades.This Festschrift on“Trends in Nanomaterials and Nanocomposites:Fundamentals,Modelling and Applications”is dedicated to his 75th birthday in recognition of his influential research on nanomaterials and nanocomposites.The range of topics covered represents a cross-section of the scientific interests of Prof.Mai and his collaborators.We would like to thank Prof.Jian Lu,Editor-in-Chief of Nano Materials Science,for publishing this special issue. 展开更多
关键词 composites SUSTAINED THANK
在线阅读 下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
3
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang shao-yun fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
在线阅读 下载PDF
Graphene film for thermal management:A review 被引量:6
4
作者 Pei Huang Yao Li +5 位作者 Gang Yang Zheng-Xin Li Yuan-Qing Li Ning Hu shao-yun fu Kostya SNovoselov 《Nano Materials Science》 CAS CSCD 2021年第1期1-16,共16页
Thermal conductivity and thermal dissipation are of great importance for modern electronics due to the increased transistor density and operation frequency of contemporary integrated circuits.Due to its exceptionally ... Thermal conductivity and thermal dissipation are of great importance for modern electronics due to the increased transistor density and operation frequency of contemporary integrated circuits.Due to its exceptionally high thermal conductivity,graphene has drawn considerable interests worldwide for heat spreading and dissipation.However,maintaining high thermal conductivity in graphene laminates(the basic technological unit)is a significant technological challenge.Aiming at highly thermal conductive graphene films(GFs),this prospective review outlines the most recent progress in the production of GFs originated from graphene oxide due to its great convenience in film processing.Additionally,we also consider such issues as film assembly,defect repair and mechanical compression during the post-treatment.We also discuss the thermal conductivity in in-plane and through-plane direction and mechanical properties of GFs.Further,the current typical applications of GFs are presented in thermal management.Finally,perspectives are given for future work on GFs for thermal management. 展开更多
关键词 Graphene film Thermal conductivity Film assembly Defect repair FREE-STANDING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部