For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuf...For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuffer and GPU parallel technology.UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA.After aligning the dual-polarization data,multiple 128M subband data are packaged into PSRDADA baseband data or multi-channel coherent dispersion filterbank data,and multiple subband filterbank data can be spliced into wideband data after time alignment.We used the Nanshan 26 m radio telescope with the L-band receiver at964~1732 MHz to observe multiple pulsars.Finally,we processed the data using DSPSR software,and the results showed that each subband could correctly fold out the pulse profile,and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.展开更多
To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRD...To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRDP can perform operations such as baseband data unpacking,channel separation,coherent dedispersion,Stokes detection,phase and folding period prediction,and folding integration in GPU clusters.We tested the algorithm using the J0437-4715 pulsar baseband data generated by the CASPSR and Medusa backends of the Parkes,and the J0332+5434 pulsar baseband data generated by the self-developed backend of the Nan Shan Radio Telescope.We obtained the pulse profiles of each baseband data.Through experimental analysis,we have found that the pulse profiles generated by the PSRDP algorithm in this paper are essentially consistent with the processing results of Digital Signal Processing Software for Pulsar Astronomy(DSPSR),which verified the effectiveness of the PSRDP algorithm.Furthermore,using the same baseband data,we compared the processing speed of PSRDP with DSPSR,and the results showed that PSRDP was not slower than DSPSR in terms of speed.The theoretical and technical experience gained from the PSRDP algorithm research in this article lays a technical foundation for the real-time processing of QTT(Qi Tai radio Telescope)ultra-wide bandwidth pulsar baseband data.展开更多
Digital channelization decomposes a wideband signal into multiple adjacent sub-bands using Parallel Technology.Channelization can effectively reduce the pressure on the radio astronomy digital backends system and make...Digital channelization decomposes a wideband signal into multiple adjacent sub-bands using Parallel Technology.Channelization can effectively reduce the pressure on the radio astronomy digital backends system and make wideband signal processing possible.Aiming at the problems of signal attenuation at sub-band edge,spectral leakage and aliasing encountered in wideband signal channelization,algorithms to reduce the problems are studied.We design a Critically Sampled Polyphase Filter Bank(CS-PFB)based on the Finite Impulse Response digital filter with a Hamming Window and systematically analyze the frequency response characteristics of the CS-PFB.Based on the channelized structure of the CS-PFB,an Over Sampled Polyphase Filter Bank(OS-PFB)is designed by data reuse,and the filtering frequency response characteristics of CS-PFB and OS-PFB are compared and analyzed.Using the wideband baseband data generated by the CASPSR(Collaboration for Astronomy Signal processing and electronics research Parkes Swinburne Recorder),we implement sub-band division and 16-band output of these data based on the 2×oversampling OS-PFB,and the problem of spectrum inversion in the sub-bands is corrected.After removing 25%of redundant data in the head and tail of each sub-band,we recombine the sub-bands into a wideband.The wideband signal is almost identical to the original observed signal.Therefore,the experimental results show that the OS-PFB can improve the channel response.For the 400 MHz baseband data of J0437-4715,we compare the pulse profile obtained from the original baseband data with the pulse profile obtained after the channelization and recombination.The phase and amplitude information of the pulse profiles are consistent,which verifies the correctness of our channelization algorithm.展开更多
基金supported by the National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuffer and GPU parallel technology.UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA.After aligning the dual-polarization data,multiple 128M subband data are packaged into PSRDADA baseband data or multi-channel coherent dispersion filterbank data,and multiple subband filterbank data can be spliced into wideband data after time alignment.We used the Nanshan 26 m radio telescope with the L-band receiver at964~1732 MHz to observe multiple pulsars.Finally,we processed the data using DSPSR software,and the results showed that each subband could correctly fold out the pulse profile,and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.
基金supported by the National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077 and 12003062)+5 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRDP can perform operations such as baseband data unpacking,channel separation,coherent dedispersion,Stokes detection,phase and folding period prediction,and folding integration in GPU clusters.We tested the algorithm using the J0437-4715 pulsar baseband data generated by the CASPSR and Medusa backends of the Parkes,and the J0332+5434 pulsar baseband data generated by the self-developed backend of the Nan Shan Radio Telescope.We obtained the pulse profiles of each baseband data.Through experimental analysis,we have found that the pulse profiles generated by the PSRDP algorithm in this paper are essentially consistent with the processing results of Digital Signal Processing Software for Pulsar Astronomy(DSPSR),which verified the effectiveness of the PSRDP algorithm.Furthermore,using the same baseband data,we compared the processing speed of PSRDP with DSPSR,and the results showed that PSRDP was not slower than DSPSR in terms of speed.The theoretical and technical experience gained from the PSRDP algorithm research in this article lays a technical foundation for the real-time processing of QTT(Qi Tai radio Telescope)ultra-wide bandwidth pulsar baseband data.
基金supported by the National Key R&D Program of China(Nos.2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC,Nos.12173077 and 12003062)+6 种基金The Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,Grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘Digital channelization decomposes a wideband signal into multiple adjacent sub-bands using Parallel Technology.Channelization can effectively reduce the pressure on the radio astronomy digital backends system and make wideband signal processing possible.Aiming at the problems of signal attenuation at sub-band edge,spectral leakage and aliasing encountered in wideband signal channelization,algorithms to reduce the problems are studied.We design a Critically Sampled Polyphase Filter Bank(CS-PFB)based on the Finite Impulse Response digital filter with a Hamming Window and systematically analyze the frequency response characteristics of the CS-PFB.Based on the channelized structure of the CS-PFB,an Over Sampled Polyphase Filter Bank(OS-PFB)is designed by data reuse,and the filtering frequency response characteristics of CS-PFB and OS-PFB are compared and analyzed.Using the wideband baseband data generated by the CASPSR(Collaboration for Astronomy Signal processing and electronics research Parkes Swinburne Recorder),we implement sub-band division and 16-band output of these data based on the 2×oversampling OS-PFB,and the problem of spectrum inversion in the sub-bands is corrected.After removing 25%of redundant data in the head and tail of each sub-band,we recombine the sub-bands into a wideband.The wideband signal is almost identical to the original observed signal.Therefore,the experimental results show that the OS-PFB can improve the channel response.For the 400 MHz baseband data of J0437-4715,we compare the pulse profile obtained from the original baseband data with the pulse profile obtained after the channelization and recombination.The phase and amplitude information of the pulse profiles are consistent,which verifies the correctness of our channelization algorithm.