期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Machine learning for modeling and identifying risk factors of pancreatic fistula
1
作者 Mikhail B Potievskiy Leonid O Petrov +6 位作者 sergei a ivanov Pavel V Sokolov Vladimir S Trifanov Nikolai a Grishin Ruslan I Moshurov Peter V Shegai andrei D Kaprin 《World Journal of Gastrointestinal Oncology》 2025年第4期104-115,共12页
BACKGROUND Pancreatic fistula is the most common complication of pancreatic surgeries that causes more serious conditions,including bleeding due to visceral vessel erosion and peritonitis.AIM To develop a machine lear... BACKGROUND Pancreatic fistula is the most common complication of pancreatic surgeries that causes more serious conditions,including bleeding due to visceral vessel erosion and peritonitis.AIM To develop a machine learning(ML)model for postoperative pancreatic fistula and identify significant risk factors of the complication.METHODS A single-center retrospective clinical study was conducted which included 150 patients,who underwent pancreat-oduodenectomy.Logistic regression,random forest,and CatBoost were employed for modeling the biochemical leak(symptomless fistula)and fistula grade B/C(clinically significant complication).The performance was estimated by receiver operating characteristic(ROC)area under the curve(AUC)after 5-fold cross-validation(20%testing and 80%training data).The risk factors were evaluated with the most accurate algorithm,based on the parameter“Importance”(Im),and Kendall correlation,P<0.05.RESULTS The CatBoost algorithm was the most accurate with an AUC of 74%-86%.The study provided results of ML-based modeling and algorithm selection for pancreatic fistula prediction and risk factor evaluation.From 14 parameters we selected the main pre-and intraoperative prognostic factors of all the fistulas:Tumor vascular invasion(Im=24.8%),age(Im=18.6%),and body mass index(Im=16.4%),AUC=74%.The ML model showed that biochemical leak,blood and drain amylase level(Im=21.6%and 16.4%),and blood leukocytes(Im=11.2%)were crucial predictors for subsequent fistula B/C,AUC=86%.Surgical techniques,morphology,and pancreatic duct diameter less than 3 mm were insignificant(Im<5%and no correlations detected).The results were confirmed by correlation analysis.CONCLUSION This study highlights the key predictors of postoperative pancreatic fistula and establishes a robust ML-based model for individualized risk prediction.These findings contribute to the advancement of personalized periop-erative care and may guide targeted preventive strategies. 展开更多
关键词 PANCREATODUODENECTOMY Postoperative pancreatic fistula Risk factors Machine learning Precision oncology
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部