Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ...Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.展开更多
Isolation of high quality DNA from multiple samples can be both time-consuming and expensive. We have developed a combined protocol to reduce the time component of the hexadecyltrimethylammonium bromide (CTAB) extra...Isolation of high quality DNA from multiple samples can be both time-consuming and expensive. We have developed a combined protocol to reduce the time component of the hexadecyltrimethylammonium bromide (CTAB) extraction method and reduced costs by regenerating the silica columns used to purify genomic DNA. We present data that shows, by in- creasing the temperature used during the CTAB method, the time required to extract crude genomic DNA can be reduced. We show that silica columns can be regenerated using HCI and still maintain their DNA-binding capacity. Furthermore, we show both spectrophotometrically, and by restriction enzyme cutting, that the quality of the eluted DNA is high. Critically, using both genomic DNA from pea and perennial ryegrass we demonstrate, using species-specific PCR primers, that there is no carry-over of DNA from repeated use of a single column. The main advantages of the method are high yield, high quality, cost effectiveness and time-saving. This method could satisfy demand when large numbers of plant genomic DNA samples are required, for example from targeting induced local lesions in genomes (TILLING) populations.展开更多
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth Five-Year Key Scientific and Technological Project
文摘Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.
基金funding and the PhD Scholarship for Fu Zeyu from the New Zealand Foundation for Arable Researchfunding for Song Jiancheng from the National Natural Science Foundation of China (31371616)
文摘Isolation of high quality DNA from multiple samples can be both time-consuming and expensive. We have developed a combined protocol to reduce the time component of the hexadecyltrimethylammonium bromide (CTAB) extraction method and reduced costs by regenerating the silica columns used to purify genomic DNA. We present data that shows, by in- creasing the temperature used during the CTAB method, the time required to extract crude genomic DNA can be reduced. We show that silica columns can be regenerated using HCI and still maintain their DNA-binding capacity. Furthermore, we show both spectrophotometrically, and by restriction enzyme cutting, that the quality of the eluted DNA is high. Critically, using both genomic DNA from pea and perennial ryegrass we demonstrate, using species-specific PCR primers, that there is no carry-over of DNA from repeated use of a single column. The main advantages of the method are high yield, high quality, cost effectiveness and time-saving. This method could satisfy demand when large numbers of plant genomic DNA samples are required, for example from targeting induced local lesions in genomes (TILLING) populations.