Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,...Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,the authors introduce the So Lo Mon framework,a comprehensive monitoring system developed for three large-scale landslides in the Autonomous Province of Bolzano,Italy.A web-based platform integrates various monitoring data(GNSS,topographic data,in-place inclinometer),providing a user-friendly interface for visualizing and analyzing the collected data.This facilitates the identification of trends and patterns in landslide behaviour,enabling the triggering of warnings and the implementation of appropriate mitigation measures.The So Lo Mon platform has proven to be an invaluable tool for managing the risks associated with large-scale landslides through non-structural measures and driving countermeasure works design.It serves as a centralized data repository,offering visualization and analysis tools.This information empowers decisionmakers to make informed choices regarding risk mitigation,ultimately ensuring the safety of communities and infrastructures.展开更多
Synergistic multi-factor early warning of large-scale landslides is a crucial component of geohazard prevention and mitigation efforts in reservoir areas.Landslide forecasting and early warning based on surface displa...Synergistic multi-factor early warning of large-scale landslides is a crucial component of geohazard prevention and mitigation efforts in reservoir areas.Landslide forecasting and early warning based on surface displacements have been widely investigated.However,the lack of direct subsurface real-time observations limits our ability to predict critical hydrometeorological conditions that trigger landslide acceleration.In this paper,we leverage subsurface strain data measured by high-resolution fiber optic sensing nerves that were installed in a giant reservoir landslide in the Three Gorges Reservoir(TGR)region,China,spanning a whole hydrologic year since February 2021.The spatiotemporal strain profile has preliminarily identified the slip zones and potential drivers,indicating that high-intensity short-duration rainstorms controlled the landslide kinematics from an observation perspective.Considering the time lag effect,we reexamined and quantified potential controls of accelerated movements using a data-driven approach,which reveals immediate response of landslide deformation to extreme rainfall with a zero-day shift.To identify critical hydrometeorological rules in accelerated movements,accounting for the dual effect of rainfall and reservoir water level variations,we thus construct a landslide prediction model that relies upon the boosting decision tree(BDT)algorithm using a dataset comprising daily rainfall,rainfall intensity,reservoir water level,water level fluctuations,and slip zone strain time series.The results indicate that landslide acceleration is most likely to occur under the conditions of mid-low water levels(i.e.,<169.700 m)and large-amount and high-intensity rainfalls(i.e.,daily rainfall>57.9 mm and rainfall intensity>24.4 mm/h).Moreover,this prediction model allows us to update hydrometeorological thresholds by incorporating the latest monitoring dataset.Standing on the shoulder of this landslide case,our study informs a practical and reliable pathway for georisk early warning based on subsurface observations,particularly in the context of enhanced extreme weather events.展开更多
基金funded by the So Lo Mon project“Monitoraggio a Lungo Termine di Grandi Frane basato su Sistemi Integrati di Sensori e Reti”(Longterm monitoring of large-scale landslides based on integrated systems of sensors and networks),Program EFRE-FESR 2014–2020,Project EFRE-FESR4008 South Tyrol–Person in charge:V.Mair。
文摘Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,the authors introduce the So Lo Mon framework,a comprehensive monitoring system developed for three large-scale landslides in the Autonomous Province of Bolzano,Italy.A web-based platform integrates various monitoring data(GNSS,topographic data,in-place inclinometer),providing a user-friendly interface for visualizing and analyzing the collected data.This facilitates the identification of trends and patterns in landslide behaviour,enabling the triggering of warnings and the implementation of appropriate mitigation measures.The So Lo Mon platform has proven to be an invaluable tool for managing the risks associated with large-scale landslides through non-structural measures and driving countermeasure works design.It serves as a centralized data repository,offering visualization and analysis tools.This information empowers decisionmakers to make informed choices regarding risk mitigation,ultimately ensuring the safety of communities and infrastructures.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235)+1 种基金the Maria Sklodowska-Curie Action(MSCA)-UPGRADE(mUltiscale IoT equipPed lonG linear infRastructure resilience built and sustAinable DevelopmEnt)project HORIZON-MSCA-2022-SE-01(Grant No.101131146)the China Scholarship Council(CSC)for funding his research period at UNIPD and CNRIRPI。
文摘Synergistic multi-factor early warning of large-scale landslides is a crucial component of geohazard prevention and mitigation efforts in reservoir areas.Landslide forecasting and early warning based on surface displacements have been widely investigated.However,the lack of direct subsurface real-time observations limits our ability to predict critical hydrometeorological conditions that trigger landslide acceleration.In this paper,we leverage subsurface strain data measured by high-resolution fiber optic sensing nerves that were installed in a giant reservoir landslide in the Three Gorges Reservoir(TGR)region,China,spanning a whole hydrologic year since February 2021.The spatiotemporal strain profile has preliminarily identified the slip zones and potential drivers,indicating that high-intensity short-duration rainstorms controlled the landslide kinematics from an observation perspective.Considering the time lag effect,we reexamined and quantified potential controls of accelerated movements using a data-driven approach,which reveals immediate response of landslide deformation to extreme rainfall with a zero-day shift.To identify critical hydrometeorological rules in accelerated movements,accounting for the dual effect of rainfall and reservoir water level variations,we thus construct a landslide prediction model that relies upon the boosting decision tree(BDT)algorithm using a dataset comprising daily rainfall,rainfall intensity,reservoir water level,water level fluctuations,and slip zone strain time series.The results indicate that landslide acceleration is most likely to occur under the conditions of mid-low water levels(i.e.,<169.700 m)and large-amount and high-intensity rainfalls(i.e.,daily rainfall>57.9 mm and rainfall intensity>24.4 mm/h).Moreover,this prediction model allows us to update hydrometeorological thresholds by incorporating the latest monitoring dataset.Standing on the shoulder of this landslide case,our study informs a practical and reliable pathway for georisk early warning based on subsurface observations,particularly in the context of enhanced extreme weather events.