Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein...Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein studied for polycrystalline metal matrix composites(MMCs).Local stress and strain fields in two types of 3layer MMCs such as fcc/fcc Cu-Ag and fcc/bcc Cu-Nb have been predicted under simple compressive deformations.Accordingly,more severe strain-induced interface instability can be observed in the fcc/bcc systems than in the fcc/fcc systems upon refining to metallic nanolayered composites(MNCs).By detailed analysis of stress and strain localization,it has been demonstrated that the interface instability is always accompanied by high-stress concentration,i.e.,thermodynamic characteristics,or high strain prevention i.e.,kinetic characteristics,at the hetero-phase interface.It then follows that the thermodynamic driving forceG and the kinetic energy barrier Q during dislocation and shear banding can be adopted to classify the deformation modes,following the so-called thermo-kinetic correlation.Then by inserting a high density of high-energy interfaces into the Cu-Nb composites,such thermo-kinetic integration at the hetero-phase interface allows a successful establishment of MMCs with the high△G-high Q deformation mode,which ensures high hardening and uniform strain distri-bution,thus efficiently suppressing the shear band,stabilizing the hetero-phase interface,and obtaining an exceptional combination in strength and ductility.Such hetero-phase interface chosen by a couple of thermodynamics and kinetics can be defined as breaking the thermo-kinetic correlation and has been proposed for artificially designing MNCs.展开更多
During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe ef...During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.展开更多
基金support of the National Natural Science Foundation of China(No.52130110 and 51901182)the Research Fund of the State Key Laboratory of Solidification Process-ing(No.2022-TS-01).
文摘Using dislocation-based constitutive modeling in three-dimension crystal plasticity finite element(3D CPFE)simulations,co-deformation and instability of hetero-phase interface in different material systems were herein studied for polycrystalline metal matrix composites(MMCs).Local stress and strain fields in two types of 3layer MMCs such as fcc/fcc Cu-Ag and fcc/bcc Cu-Nb have been predicted under simple compressive deformations.Accordingly,more severe strain-induced interface instability can be observed in the fcc/bcc systems than in the fcc/fcc systems upon refining to metallic nanolayered composites(MNCs).By detailed analysis of stress and strain localization,it has been demonstrated that the interface instability is always accompanied by high-stress concentration,i.e.,thermodynamic characteristics,or high strain prevention i.e.,kinetic characteristics,at the hetero-phase interface.It then follows that the thermodynamic driving forceG and the kinetic energy barrier Q during dislocation and shear banding can be adopted to classify the deformation modes,following the so-called thermo-kinetic correlation.Then by inserting a high density of high-energy interfaces into the Cu-Nb composites,such thermo-kinetic integration at the hetero-phase interface allows a successful establishment of MMCs with the high△G-high Q deformation mode,which ensures high hardening and uniform strain distri-bution,thus efficiently suppressing the shear band,stabilizing the hetero-phase interface,and obtaining an exceptional combination in strength and ductility.Such hetero-phase interface chosen by a couple of thermodynamics and kinetics can be defined as breaking the thermo-kinetic correlation and has been proposed for artificially designing MNCs.
基金financially supported by the National Key R&D Program of China (Nos. 2017YFB0703001 and 2017YFB0305100)the National Natural Science Foundation of China (Nos. 51134011, 51431008, 51790483 and 51801157)+4 种基金the Fundamental Research Funds for the Central Universities (No. 3102017zy064)the Research Fund of the State Key Laboratory of Solidification Processing (Nos. 117-TZ-2015, 159-QP-2016)the Analytical & Testing Center of Northwestern Polytechnical University for Equipment Supportfinancial support from the Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical Universitythe China Scholarship Council (CSC) Scholarship
文摘During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.