期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Neuroprotective potential for mitigating ischemia-reperfusion-induced damage
1
作者 Zi Ye runqing liu +6 位作者 Hangxing Wang Aizhen Zuo Cen Jin Nan Wang Huiqi Sun Luqian Feng Hua Yang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2199-2217,共19页
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre... Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 apoptosis autophagy blood-brain barrier dietary supplements drug HORMONES inflammation NEUROPROTECTION oxidative stress prognosis PYROPTOSIS reperfusion injury risk factors RNA THERAPEUTICS
在线阅读 下载PDF
Using pectin to separate talc and molybdenite through the surface modification with Cu^(2+):Applications and mechanism 被引量:3
2
作者 Changtao Wang Qilin Zhai +4 位作者 runqing liu Meirong Wu Wei Sun Nianwen Jing Feifei Xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期363-377,共15页
Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce th... Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce the differential adsorption of pectin onto molybdenite and talc surfaces for enhanced flotation separation.Contact-angle experiments,scanning electron microscopy,adsorption measurements,timeof-flight secondary-ion mass spectrometry,and X-ray photoelectron spectroscopy analyses were conducted to reveal the interaction mechanism.Results illustrated that molybdenite and talc could not be separated using pectin alone,while molybdenite was selectively depressed after surface modification by copper sulfate and this effect was strengthened under alkaline conditions.Metal sites(Mg,Si and Mo)of talc and molybdenite themselves were unable to react with pectin,whereas Cu+would deposit and further function as active site for pectin chemisorption after surface modification.However,the quantity of deposited Cu sites dropped on talc surface and increased on molybdenite surface with increased pH,and the Mo atoms of molybdenite crystal were activated to take part in pectin chemisorption.Therefore,more pectin was adhered on molybdenite surface,which imparted molybdenite stronger wettability.Herein,surface-modification through metal ions can enable the differential adsorption of organic depressants and enhance the flotation separation of minerals. 展开更多
关键词 MOLYBDENITE TALC Surface modification Induced adsorption
在线阅读 下载PDF
Effect of Mineral Processing Wastewater on Electrochemistry of Galena
3
作者 Jing Xu runqing liu +2 位作者 Wei Sun Yuehua Hu Jingping Dai 《Journal of Environmental Science and Engineering(A)》 2012年第3期279-285,共7页
Electrochemical technology was introduced to study the floatability of galena in some wastewater samples from different processes of mineral processing plant in Fankou Lead-Zinc Mine. It is shown that the residual col... Electrochemical technology was introduced to study the floatability of galena in some wastewater samples from different processes of mineral processing plant in Fankou Lead-Zinc Mine. It is shown that the residual collector molecules in the wastewater from the thickening of lead and zinc concentrates can benefit the formation of lead xanthanate onto the surface of galena, yet, some special chemical components in the wastewater from zinc tailings and effluent may induce some surface reactions on galena, and herewith the direct reuse of this water may bring disadvantageous influence on galena flotation. 展开更多
关键词 Mineral processing lead-zinc ore mineral processing wastewater surface electrochemistry.
在线阅读 下载PDF
Purification of starch and phosphorus wastewater using core-shell magnetic seeds prepared by sulfated roasting 被引量:4
4
作者 Chunjie Du Jinsheng Yu +9 位作者 Wei Sun Haisheng Han Yuehua Hu Pan Chen Panpan Hou runqing liu Li Wang Yue Yang Ruohua liu Lei Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第7期4-16,共13页
Core-shell magnetic seeds with certain adsorption capacity that were prepared by sulfated roasting, served as the core of a magnetic separation technology for purification of starch wastewater. XRD and SEM results ind... Core-shell magnetic seeds with certain adsorption capacity that were prepared by sulfated roasting, served as the core of a magnetic separation technology for purification of starch wastewater. XRD and SEM results indicate that magnetite's surface transformed to be porous α-Fe_2O_3 structure. Compared with magnetite particles, the specific surface area was significantly improved to be 8.361 from 2.591 m^2/g, with little decrease in specific susceptibility. Zeta potential, FT-IR and XPS experiments indicate that both phosphate and starch adsorbed on the surface of the core-shell magnetic seeds by chemical adsorption, which fits well with the Langmuir adsorption model. The porous surface structure of magnetic seeds significantly contributes to the adsorption of phosphate and starch species, which can be efficiently removed to be 1.51 mg/L(phosphate) and 9.51 mg/L(starch) using magnetic separation. 展开更多
关键词 CORE-SHELL magnetic seeds SULFATED ROASTING Phosphate STARCH PURIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部