As a driving source for many nonlinear vortex phenomena, such as the generation of isolated attosecond optical vortices, terahertz vortices, etc., terawatt-class few-cycle short-wave infrared vortex lasers are now att...As a driving source for many nonlinear vortex phenomena, such as the generation of isolated attosecond optical vortices, terahertz vortices, etc., terawatt-class few-cycle short-wave infrared vortex lasers are now attracting widespread attention. However, because the vortex characteristics of optical vortices are difficult to maintain in the amplification and compression stages, the generation of high-intensity few-cycle vortex lasers is still in the exploratory stage. In this article, we report 20-Hz, 18.6-mJ, 60-fs, and 1.45-μm infrared vortex lasers with 1, 2, and 3 topological charges successfully generated in an optical parametric chirped pulse amplification system. A clean intensity node at the beam center is observed and highly stable propagation in free space is demonstrated. Moreover, this high-energy vortex pulse is spectrally broadened in multiple thin plates and temporally compressed to 10.59 fs (2.2 optical cycles) with chirped mirrors, corresponding to a peak power of 1.08 TW, while highly preserving the vortex information. We believe that the generated high-energy few-cycle vortex laser has important applications from vortex optics to strong-field physics.展开更多
Infrared femtosecond optical vortices open up many new research fields,such as optical micro–nano manipulation,time-resolved nonlocal spectroscopy in solids,vortex secondary radiation and particle generations.In this...Infrared femtosecond optical vortices open up many new research fields,such as optical micro–nano manipulation,time-resolved nonlocal spectroscopy in solids,vortex secondary radiation and particle generations.In this article,we demonstrate a femtosecond optical vortex laser system based on a two-stage optical parametric amplifier.In our experiment,1.45µm vortex signal pulses with energy of 190µJ and 1.8µm vortex idler pulses with energy of 158µJ have been obtained,and the pulse durations are 51 and 48 fs,respectively.Both the energy fluctuations of the signal and idler pulses are less than 0.5%(root mean square),and the spectral fluctuations are less than 1.5%within 1 hour.This type of highly stable femtosecond optical vortex laser has a wide range of applications for vortex strong-field physics.展开更多
A high-brightness ultrabroadband supercontinuum white laser is desirable for various fields of modern science.Here,we present an intense ultraviolet-visible-infrared full-spectrum femtosecond laser source(with 300–50...A high-brightness ultrabroadband supercontinuum white laser is desirable for various fields of modern science.Here,we present an intense ultraviolet-visible-infrared full-spectrum femtosecond laser source(with 300–5000 nm 25 dB bandwidth)with 0.54 mJ per pulse.The laser is obtained by sending a 3.9μm,3.3 mJ mid-infrared pump pulse into a cascaded architecture of gas-filled hollow-core fiber,a bare lithium niobate crystal plate,and a specially designed chirped periodically poled lithium niobate crystal,under the synergic action of second and third order nonlinearities such as high harmonic generation and self-phase modulation.This full-spectrum femtosecond laser source can provide a revolutionary tool for optical spectroscopy and find potential applications in physics,chemistry,biology,material science,industrial processing,and environment monitoring.展开更多
Temporal contrast directly affects the interaction between ultraintense and ultrashort pulse lasers with matter.Seed laser sources with broad bandwidth and high temporal contrast are significant for overall temporal c...Temporal contrast directly affects the interaction between ultraintense and ultrashort pulse lasers with matter.Seed laser sources with broad bandwidth and high temporal contrast are significant for overall temporal contrast enhancement.The technique of cascaded nonlinear processes with optical parametric amplification and second-harmonic generation is demonstrated for high temporal contrast seed source generation.Within 40 ps before the main pulse,the temporal contrast reaches over 10^(11).The pulse energy and duration of the high-contrast pulse are 112μJ and 70 fs,respectively.Considering its high beam quality and stability,this laser source can serve as a high-quality seed for Nd:glass-based ultraintense and ultrashort pulse laser facilities.展开更多
基金supported by the National Key R&D Program of China(2022YFA1604400)the National Natural Science Foundation of China(61925507,62075227,22227901,and 12004402)+3 种基金the Youth Innovation Promotion Association CAS(No.2020248)the Shanghai Rising-Star Program(21QA1410200)the Shanghai Sailing Program(No.20YF1455000)the National Commercial Aircraft Manufacturing Engineering Technology Research Center innovation funding project(COMAC-FGS-2021-603).
文摘As a driving source for many nonlinear vortex phenomena, such as the generation of isolated attosecond optical vortices, terahertz vortices, etc., terawatt-class few-cycle short-wave infrared vortex lasers are now attracting widespread attention. However, because the vortex characteristics of optical vortices are difficult to maintain in the amplification and compression stages, the generation of high-intensity few-cycle vortex lasers is still in the exploratory stage. In this article, we report 20-Hz, 18.6-mJ, 60-fs, and 1.45-μm infrared vortex lasers with 1, 2, and 3 topological charges successfully generated in an optical parametric chirped pulse amplification system. A clean intensity node at the beam center is observed and highly stable propagation in free space is demonstrated. Moreover, this high-energy vortex pulse is spectrally broadened in multiple thin plates and temporally compressed to 10.59 fs (2.2 optical cycles) with chirped mirrors, corresponding to a peak power of 1.08 TW, while highly preserving the vortex information. We believe that the generated high-energy few-cycle vortex laser has important applications from vortex optics to strong-field physics.
基金supported by the National Key R&D Program of China(No.2017YFE0123700)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB1603)+5 种基金the National Natural Science Foundation of China(Nos.61925507,62075227,and 12004402)the Program of Shanghai Academic/Technology Research Leader(No.18XD1404200)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the Youth Innovation Promotion Association CAS(No.2020248)the Shanghai Sailing Program(No.20YF1455000)the Shanghai Rising-Star Program(No.21QA1410200).
文摘Infrared femtosecond optical vortices open up many new research fields,such as optical micro–nano manipulation,time-resolved nonlocal spectroscopy in solids,vortex secondary radiation and particle generations.In this article,we demonstrate a femtosecond optical vortex laser system based on a two-stage optical parametric amplifier.In our experiment,1.45µm vortex signal pulses with energy of 190µJ and 1.8µm vortex idler pulses with energy of 158µJ have been obtained,and the pulse durations are 51 and 48 fs,respectively.Both the energy fluctuations of the signal and idler pulses are less than 0.5%(root mean square),and the spectral fluctuations are less than 1.5%within 1 hour.This type of highly stable femtosecond optical vortex laser has a wide range of applications for vortex strong-field physics.
基金The authors are grateful for the financial support from the Science and Technology Project of Guangdong(2020B010190001)National Natural Science Foundation of China(11974119,61925507,62075227)+3 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C594)National Key R&D Program of China(2018YFA 0306200)Shanghai Rising-Star Program(21QA1410200)Youth Innovation Promotion Association CAS(2020248).
文摘A high-brightness ultrabroadband supercontinuum white laser is desirable for various fields of modern science.Here,we present an intense ultraviolet-visible-infrared full-spectrum femtosecond laser source(with 300–5000 nm 25 dB bandwidth)with 0.54 mJ per pulse.The laser is obtained by sending a 3.9μm,3.3 mJ mid-infrared pump pulse into a cascaded architecture of gas-filled hollow-core fiber,a bare lithium niobate crystal plate,and a specially designed chirped periodically poled lithium niobate crystal,under the synergic action of second and third order nonlinearities such as high harmonic generation and self-phase modulation.This full-spectrum femtosecond laser source can provide a revolutionary tool for optical spectroscopy and find potential applications in physics,chemistry,biology,material science,industrial processing,and environment monitoring.
基金supported by the National Key R&D Program of China(2017YFE0123700)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB1603)+5 种基金the National Natural Science Foundation of China(61925507,62075227,12004402)the Program of Shanghai Academic/Technology Research Leader(18XD1404200)the Shanghai Municipal Science and Technology Major Project(2017SHZDZX02)the Youth Innovation Promotion Association CAS(2020248)the Shanghai Sailing Program(20YF1455000)the Shanghai Rising-Star Program(21QA1410200)
文摘Temporal contrast directly affects the interaction between ultraintense and ultrashort pulse lasers with matter.Seed laser sources with broad bandwidth and high temporal contrast are significant for overall temporal contrast enhancement.The technique of cascaded nonlinear processes with optical parametric amplification and second-harmonic generation is demonstrated for high temporal contrast seed source generation.Within 40 ps before the main pulse,the temporal contrast reaches over 10^(11).The pulse energy and duration of the high-contrast pulse are 112μJ and 70 fs,respectively.Considering its high beam quality and stability,this laser source can serve as a high-quality seed for Nd:glass-based ultraintense and ultrashort pulse laser facilities.