The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and me...The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content.展开更多
Hot deformation is one of the primary methods for fabricating anisotropic rare earth permanent magnets.Firstly,rapidly quenched powder flakes with a nanocrystal structure are condensed into fully dense isotropic precu...Hot deformation is one of the primary methods for fabricating anisotropic rare earth permanent magnets.Firstly,rapidly quenched powder flakes with a nanocrystal structure are condensed into fully dense isotropic precursors using the hot-pressing process.The prepared isotropic precursors are then hot-deformed to produce high-anisotropy uniaxial bulk rare earth permanent magnets and a highly textured structure is produced via this process.The resulting magnets possess many advantages such as near-net-shape,outstanding corrosion resistance,and ultrafine-grain structure.The influence of the preparation parameters utilized in the hot-pressing and deformation processes on the magnetic properties and microstructure of the permanent magnets are systemically summarized in this report.As a near-net-shape technique,the hot deformation process has notable advantages with regard to the production of irregular shapes,especially for radially oriented ringshaped magnets with high length-diameter ratios or thin walls.The difficulties associated with the fabrication of crack-free,homogeneous,and non-decentered ring-shaped magnets are substantially resolved through an emphasis on mold design,adjustment of deformation parameters,and application of theoretical simulation.Considering the characteristics of hotdeformed magnets which include grain shape and size,anisotropic distribution of intergranular phases,etc.,investigation and improvement of the mechanical and electric properties,in addition to thermal stability,with the objective of improving the application of hot-deformed magnets or ring-shaped magnets,is of practical significance.展开更多
Lithium-sulfur(Li-S)batteries with high theoretical specific energy of 2600 Wh kg^(-1) are one of promising candidates for next-generation energy storage devices.However,the severe shuttle effect of intermediate polys...Lithium-sulfur(Li-S)batteries with high theoretical specific energy of 2600 Wh kg^(-1) are one of promising candidates for next-generation energy storage devices.However,the severe shuttle effect of intermediate polysulfides leads to rapid capacity decay during battery cycling,especially at high sulfur loading and high current density.Herein,the MnO nanoparticles covered carbon with endoplasmic-reticulum-like structure(MnO@ERC)as separator coating for Li-S batteries is proposed.The MnO@ERC coating can act as upper current collector to enhance electrical conductivity of cathode and decrease the interface impedance of the whole battery.More importantly,both the polar MnO nanoparticles and Mn_(3)O_(4) formed at the end of the charging process can catalyze the conversion of lithium polysulfides,which is convinced by the high adsorption energy and the elongate S–S bond.As a result,Li-S batteries based on MnO@ERC coating separator showed stable cycle for 350 cycles under 0.5C,high discharge specific capacity of 783.6m Ah g^(-1) after 100 cycles at 0.2 C,534.7 m Ah g^(-1) after 100 cycles under the sulfur loading of 5.26 mg cm;and low self-discharge rate of 9.1%after resting 48 h..展开更多
The commercial 42 M Nd-Fe-B magnet was treated by grain boundary diffusion(GBD)with Pr_(70)Co_(30)(PC),Pr_(70)Al_(30)(PA)and Pr_(70)Co_(15)Al_(15)(PCA)alloys,respectively.The mechanism of coercivity enhancement in the...The commercial 42 M Nd-Fe-B magnet was treated by grain boundary diffusion(GBD)with Pr_(70)Co_(30)(PC),Pr_(70)Al_(30)(PA)and Pr_(70)Co_(15)Al_(15)(PCA)alloys,respectively.The mechanism of coercivity enhancement in the GBD magnets was investigated.The coercivity was enhanced from 1.63 T to 2.15 T in the PCA GBD magnet,higher than the 1.81 T of the PC GBD magnet and the 2.01 T of the PA GBD magnet.This indicates that the joint addition of Co and Al in the diffusion source can further improve the coercivity.Microstructural investigations show that the coercivity enhancement is mainly attributed to the exchange-decoupling of the GB phases.In the PCA GBD magnet,the wider thin GB phases can be formed and the thin GB phases can still be observed at the diffusion depth of 1500μm due to the combined action of Co and Al.At the same time,the formation of the Pr-rich shell can also be observed,which is helpful for the coercivity enhancement.展开更多
In order to counteract the demagnetization caused by eddy current loss,widespread attention has been devoted to increasing the resistivity of permanent magnets.We prepared 2:17-type Sm Co magnets doped with different ...In order to counteract the demagnetization caused by eddy current loss,widespread attention has been devoted to increasing the resistivity of permanent magnets.We prepared 2:17-type Sm Co magnets doped with different ZrO_(2)contents and investigated the influence of the ZrO_(2)content on the magnetic properties and resistive anisotropism.The results showed that not only was the resistivity of the magnet improved,but,in addition,the coercivity of the magnet was significantly increased.The microstructure was studied with TEM,which showed that ZrO_(2)doping was able to cause a decrease in the lamellar phase density and the growth of cellular structures.The increased grain boundaries and Sm_(2)O_(3)phases were favorable to the improvement of resistivity.The decrease of the lamellar phases caused a narrowing of the resistive anisotropism.The additional Cu in the center of the cellular boundaries was the main reason for the enhancement of Hcj.However,an excessive amount caused an increase of the Zr_6(Fe Co)_(23)phase and a deterioration of the cellular structure,thereby leading to a decrease in coercivity.展开更多
A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet wa...A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet was for the Pr_(65)Al_(15)Cu_(20)GBD magnet,from 16.38 kOe to 22.38 kOe.Microstructural investigations indicated that increase in the Al content in the diffusion source can form a continuous grain boundary(GB)phase,optimizing the microstructure to enhance the coercivity.The coercivity enhancement is mainly due to the formation of a continuous GB phase to separate the main phase grains.Exchange decoupling between the adjacent main phase grains is enhanced after the GBD process.Meanwhile,the introduction of Al can effectively promote the infiltration of Pr into the magnet,which increases the diffusion rate of rare-earth elements within a certain range.This work provides a feasible method to enhance coercivity and reduce the use of rare-earth resources by partial replacement of rare-earth elements with non-rare-earth elements in the diffusion source.展开更多
We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly ...We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.展开更多
The effects of CeO_(2)doping on the magnetic properties and microstructure of 2:17 type SmCo magnets are studied.With the increase of CeO_(2)from 0 wt.%to 3 wt.%,the coercivity of the magnets increases from 22.22 kOe ...The effects of CeO_(2)doping on the magnetic properties and microstructure of 2:17 type SmCo magnets are studied.With the increase of CeO_(2)from 0 wt.%to 3 wt.%,the coercivity of the magnets increases from 22.22 kOe to over 29.37 kOe,which is an increase of more than 30%.When the doping content is lower than 1 wt.%,the remanence and magnetic energy product of the magnets remain almost constant.Both decrease sharply as the doping concentration further increases.After CeO_(2)doping,the oxide content in the magnet increases significantly and the Ce element is uniformly distributed in the magnet.Observing the magnetic domains reveals that doping with CeO_(2)can refine the magnetic domains and make the magnetic domain wall more stable,resulting in a significant increase in the coercivity of the magnets.展开更多
The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing,and the resulting magnets are called the hot-pressed pretreated(HPP)magnets.The coercivity of the HPP magnets increases as the annealed tempera...The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing,and the resulting magnets are called the hot-pressed pretreated(HPP)magnets.The coercivity of the HPP magnets increases as the annealed temperature increases.When the annealing temperature is 900℃,the coercivity of the magnet is only 17.6 kOe(1 Oe=79.5775 A·m^-1),but when the annealing temperature rises up to 1060℃,the coercivity of the magnet reaches 23.53 kOe,which is remarkably increased by 33.7%.The microstructure analysis indicates that the grain surface of the HPP magnet becomes smoother as the annealed temperature increases.The microstructure factorαis changed according to the intrinsic coercivity model formula.Theαof the magnet at 900℃is only 0.578,but it is 0.825 at 1060℃.Microstructural optimization is due mainly to the increase of coercivity of the HPP magnet.展开更多
The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray d...The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction (XRD) reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets. Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd-Fe-B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve (FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.展开更多
Objective To investigate the potential impact of ambient air pollution on public health under various traffic policies in Shanghai. Methods The exposure level of Shanghai residents to air pollution under various plann...Objective To investigate the potential impact of ambient air pollution on public health under various traffic policies in Shanghai. Methods The exposure level of Shanghai residents to air pollution under various planned traffic scenarios was estimated, and the public health impact was assessed using concentration-response functions derived from available epidemiological studies. Results Our results showed that ambient air pollution in relation to traffic scenarios had a significant impact on the future health status of Shanghai residents. Compared with the base case scenario, implementation of various traffic scenarios could prevent 759-1574, 1885-2420, and 2277-2650 PM10-related avoidable deaths (mean-value) in 2010, 2015, and 2020, respectively. It could also decrease the incidence of several relevant diseases. Conclusion Our findings emphasize the need to consider air pollution-related health effects as an important impact of traffic policy in Shanghai.展开更多
Objective: To study the effect of RFTVR and CO2 laser on the improvement of symptoms, QOL and vas of patients with early laryngeal cancer. Methods: In this study, 120 patients with laryngeal cancer diagnosed and treat...Objective: To study the effect of RFTVR and CO2 laser on the improvement of symptoms, QOL and vas of patients with early laryngeal cancer. Methods: In this study, 120 patients with laryngeal cancer diagnosed and treated from January 2015 to December 2016 were taken as research objects. All patients were randomly divided into observation group and control group, 60 patients in each group. Patients in observation group were treated with RFTVR, and patients in control group were treated with new-type fiber-optic CO2 laser. The patients in the two groups were treated with cisplatin injection. The differences of perioperative indexes, swallowing function, pronunciation function, survival period, QOL score and VAS score between the two groups were compared. Results: There was no significant difference in the amount of intraoperative bleeding, operation time and hospitalization time between the two groups (P > 0.05);the correct swallowing of the observation group was significantly higher than that of the control group. After treatment, jitter, shimmer and HNR of the two groups were significantly improved, and jitter and shimmer of the observation group were significantly lower than that of the control group, and HNR was significantly higher than that of the control group (P < 0.05) The QOL score and VAS score of the two groups were significantly improved, and the QOL score of the observation group was significantly higher than that of the control group and the VAS score was significantly lower than that of the control group (P < 0.05);the total survival period and tumor free survival period of the observation group were significantly higher than that of the control group. Conclusion: Compared with CO2 laser treatment, the swallowing function and voice function of patients treated by low temperature plasma radiofrequency ablation were significantly improved, and the life quality of patients was significantly improved by prolonging the survival period of patients..展开更多
Cu-rich cell boundary phase is difficult to precipitate evenly,resulting in a generally poor demagnetization curve squareness for Fe-rich Sm_(2)Co_(17)-type magnet,which is a key factor limiting the further improvemen...Cu-rich cell boundary phase is difficult to precipitate evenly,resulting in a generally poor demagnetization curve squareness for Fe-rich Sm_(2)Co_(17)-type magnet,which is a key factor limiting the further improvement of magnetic energy product.In this study,we report that nanoscale strip-like ordered micro-domains distributed in1:7H disordered matrix phase of the solid solution precursor is a new factor significantly affecting the precipitation and distribution of the cell boundary phase.Long strip-like and continuous micro-twin structure with twin boundaries neatly perpendicular to the C-axis is observed after sintering treatment.After solution treatment,sequential and long strip-like micro-twins gradually transform into disordered state along the basal plane,forming narrow disordered 1:7H(TbCu_(7)-type structure)phase between the separated strip-like ordered micro-domains.This disordering transformation takes place via broken down of the long strip-like ordered micro-domains,which is accomplished by narrowing along the width direction followed by reduction of the length.Furthermore,a new model revealing the effect of the ordered micro-domains on the formation of the cell boundary phase is proposed.Antiphase boundaries enriched in Cu have already existed in the precursor with long strip-like ordered micro-domains.Therefore,the Cu-rich cell boundary phase acting as strong pinning centers cannot be precipitated homogeneously and distributed continuously after aging,resulting in a poor demagnetization curve squareness of Sm_(2)Co_(17)-type magnet.Our results indicate that significant broken down of the nanoscale ordered micro-domains in solution precursor is the key factor improving the distribution of cell boundary phase in Sm_(2)Co_(17)-type magnets.展开更多
We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer...We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.展开更多
The incorporation of the high-abundance rareearth element Y in(Nd,Y)-Fe-B sintered magnets offers an opportunity to reduce the cost of permanent magnetic materials,while promoting the balanced usage of rare-earth reso...The incorporation of the high-abundance rareearth element Y in(Nd,Y)-Fe-B sintered magnets offers an opportunity to reduce the cost of permanent magnetic materials,while promoting the balanced usage of rare-earth resources.However,the performance of(Nd,Y)-Fe-B magnets prepared using the conventional dual-main-phase(DMP)method undergoes significant degradation due to the strong diffusion ability of Y.To suppress the excessive diffusion of Y,this study presents a macroscopic lamellar magnet preparation scheme.Consequently,the micromagnetic simulations revealed that the multilayer magnets exhibited superior intrinsic performance compared to DMP magnets.Subsequently,the multilayer magnets were prepared by alternately stacking the 0%Y(0Y)and 30%Y(30Y)magnetic powders.The observed magnetic properties demonstrated that the coercvity of the three-layer magnet was~0.23 T higher than that of the DMP magnet,leading to improved coercivity stability at high temperatures.Furthermore,the microstructural observations and elemental analyses indicated the presence of a~200-μm-thick interface layer at the contact site between the 0Y and 30Y magnetic layers.Thus,the proposed approach effectively suppressed the excessive diffusion of Y in(Nd,Y)-Fe-B magnets,thereby enhancing the magnetic performance of the sintered magnets.展开更多
基金the NationalKey R&D Program of China (Grant Nos. 2021YFB3503102and 2022YFB3505301)Science and Technology Innovation2025 Major Project of Ningbo (Grant No. 2022Z204)+2 种基金ZhejiangProvincial Natural Science Foundation Youth OriginalProject (Grant No. LDQ24E010001)the Key R&D Programof Shanxi Province (Grant No. 202302050201014)Ningbo Natural Science Foundation (Grant No. 2021J216).
文摘The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700902)the National Natural Science Foundation of China(Grant Nos.51671207,51601207,and 51501213)
文摘Hot deformation is one of the primary methods for fabricating anisotropic rare earth permanent magnets.Firstly,rapidly quenched powder flakes with a nanocrystal structure are condensed into fully dense isotropic precursors using the hot-pressing process.The prepared isotropic precursors are then hot-deformed to produce high-anisotropy uniaxial bulk rare earth permanent magnets and a highly textured structure is produced via this process.The resulting magnets possess many advantages such as near-net-shape,outstanding corrosion resistance,and ultrafine-grain structure.The influence of the preparation parameters utilized in the hot-pressing and deformation processes on the magnetic properties and microstructure of the permanent magnets are systemically summarized in this report.As a near-net-shape technique,the hot deformation process has notable advantages with regard to the production of irregular shapes,especially for radially oriented ringshaped magnets with high length-diameter ratios or thin walls.The difficulties associated with the fabrication of crack-free,homogeneous,and non-decentered ring-shaped magnets are substantially resolved through an emphasis on mold design,adjustment of deformation parameters,and application of theoretical simulation.Considering the characteristics of hotdeformed magnets which include grain shape and size,anisotropic distribution of intergranular phases,etc.,investigation and improvement of the mechanical and electric properties,in addition to thermal stability,with the objective of improving the application of hot-deformed magnets or ring-shaped magnets,is of practical significance.
基金supported by the National Natural Science Foundation of China,China(51772030,51972030)the Beijing Institute of Technology Research Fund Program for Young Scholars,Chinathe Beijing Outstanding Young Scientists Program,China(BJJWZYJH01201910007023)。
文摘Lithium-sulfur(Li-S)batteries with high theoretical specific energy of 2600 Wh kg^(-1) are one of promising candidates for next-generation energy storage devices.However,the severe shuttle effect of intermediate polysulfides leads to rapid capacity decay during battery cycling,especially at high sulfur loading and high current density.Herein,the MnO nanoparticles covered carbon with endoplasmic-reticulum-like structure(MnO@ERC)as separator coating for Li-S batteries is proposed.The MnO@ERC coating can act as upper current collector to enhance electrical conductivity of cathode and decrease the interface impedance of the whole battery.More importantly,both the polar MnO nanoparticles and Mn_(3)O_(4) formed at the end of the charging process can catalyze the conversion of lithium polysulfides,which is convinced by the high adsorption energy and the elongate S–S bond.As a result,Li-S batteries based on MnO@ERC coating separator showed stable cycle for 350 cycles under 0.5C,high discharge specific capacity of 783.6m Ah g^(-1) after 100 cycles at 0.2 C,534.7 m Ah g^(-1) after 100 cycles under the sulfur loading of 5.26 mg cm;and low self-discharge rate of 9.1%after resting 48 h..
基金Project supported by the Key Research and Development Program of Zhejiang ProvinceChina(Grant No.2021C01190)+4 种基金the Major Project of Science and Technology Innovation 2025 in Ningbo CityChina(Grant No.2018B10015)Zhejiang Province Public Welfare Technology Application Research Project(Grant No.LGG21E010007)the Inner Mongolia Major Technology Projectthe K.C.Wong Magna Fund in Ningbo University。
文摘The commercial 42 M Nd-Fe-B magnet was treated by grain boundary diffusion(GBD)with Pr_(70)Co_(30)(PC),Pr_(70)Al_(30)(PA)and Pr_(70)Co_(15)Al_(15)(PCA)alloys,respectively.The mechanism of coercivity enhancement in the GBD magnets was investigated.The coercivity was enhanced from 1.63 T to 2.15 T in the PCA GBD magnet,higher than the 1.81 T of the PC GBD magnet and the 2.01 T of the PA GBD magnet.This indicates that the joint addition of Co and Al in the diffusion source can further improve the coercivity.Microstructural investigations show that the coercivity enhancement is mainly attributed to the exchange-decoupling of the GB phases.In the PCA GBD magnet,the wider thin GB phases can be formed and the thin GB phases can still be observed at the diffusion depth of 1500μm due to the combined action of Co and Al.At the same time,the formation of the Pr-rich shell can also be observed,which is helpful for the coercivity enhancement.
基金the National Natural Science Foundation of China(Grant No.51877094)Ningbo Science and Technology Project(Grant No.2014B11009)。
文摘In order to counteract the demagnetization caused by eddy current loss,widespread attention has been devoted to increasing the resistivity of permanent magnets.We prepared 2:17-type Sm Co magnets doped with different ZrO_(2)contents and investigated the influence of the ZrO_(2)content on the magnetic properties and resistive anisotropism.The results showed that not only was the resistivity of the magnet improved,but,in addition,the coercivity of the magnet was significantly increased.The microstructure was studied with TEM,which showed that ZrO_(2)doping was able to cause a decrease in the lamellar phase density and the growth of cellular structures.The increased grain boundaries and Sm_(2)O_(3)phases were favorable to the improvement of resistivity.The decrease of the lamellar phases caused a narrowing of the resistive anisotropism.The additional Cu in the center of the cellular boundaries was the main reason for the enhancement of Hcj.However,an excessive amount caused an increase of the Zr_6(Fe Co)_(23)phase and a deterioration of the cellular structure,thereby leading to a decrease in coercivity.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3502802)Major Science and Technology Research and Development Project of Jiangxi Province,China (Grant No.20203ABC28W006)+2 种基金the Key Research and Development Program of Shandong Province,China (Grant No.2019JZZY010321)Major Project of“Science and Technology Innovation 2025”in Ningbo City (Grant No.2020Z046)the K.C.Wong Magna Fund in Ningbo University。
文摘A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet was for the Pr_(65)Al_(15)Cu_(20)GBD magnet,from 16.38 kOe to 22.38 kOe.Microstructural investigations indicated that increase in the Al content in the diffusion source can form a continuous grain boundary(GB)phase,optimizing the microstructure to enhance the coercivity.The coercivity enhancement is mainly due to the formation of a continuous GB phase to separate the main phase grains.Exchange decoupling between the adjacent main phase grains is enhanced after the GBD process.Meanwhile,the introduction of Al can effectively promote the infiltration of Pr into the magnet,which increases the diffusion rate of rare-earth elements within a certain range.This work provides a feasible method to enhance coercivity and reduce the use of rare-earth resources by partial replacement of rare-earth elements with non-rare-earth elements in the diffusion source.
基金the National Natural Science Foundation of China(Grant No.52101238)the“Pioneer”and“Leading Goose”Research and Development Program of Zhejiang(Grant No.2021C01190)Major Project of Ningbo Science and Technology Innovation 2025(Grant No.2020Z046)。
文摘We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.
基金the National Key R&D Program of China(Grant No.2021YFB3503102)the Zhejiang Provincial Key R&D Program of China(Grant No.2021C01191)the Science and Technology Innovation 2025 Major Project of Ningbo(Grant No.2020Z037)。
文摘The effects of CeO_(2)doping on the magnetic properties and microstructure of 2:17 type SmCo magnets are studied.With the increase of CeO_(2)from 0 wt.%to 3 wt.%,the coercivity of the magnets increases from 22.22 kOe to over 29.37 kOe,which is an increase of more than 30%.When the doping content is lower than 1 wt.%,the remanence and magnetic energy product of the magnets remain almost constant.Both decrease sharply as the doping concentration further increases.After CeO_(2)doping,the oxide content in the magnet increases significantly and the Ce element is uniformly distributed in the magnet.Observing the magnetic domains reveals that doping with CeO_(2)can refine the magnetic domains and make the magnetic domain wall more stable,resulting in a significant increase in the coercivity of the magnets.
基金Project supported by the Major Project of“Science and Technology Innovation 2025”in Ningbo City,China(Grant Nos.2018B10086 and 2018B10017).
文摘The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing,and the resulting magnets are called the hot-pressed pretreated(HPP)magnets.The coercivity of the HPP magnets increases as the annealed temperature increases.When the annealing temperature is 900℃,the coercivity of the magnet is only 17.6 kOe(1 Oe=79.5775 A·m^-1),but when the annealing temperature rises up to 1060℃,the coercivity of the magnet reaches 23.53 kOe,which is remarkably increased by 33.7%.The microstructure analysis indicates that the grain surface of the HPP magnet becomes smoother as the annealed temperature increases.The microstructure factorαis changed according to the intrinsic coercivity model formula.Theαof the magnet at 900℃is only 0.578,but it is 0.825 at 1060℃.Microstructural optimization is due mainly to the increase of coercivity of the HPP magnet.
基金Project supported by the National Natural Science Foundation of China(Grant No.51590880)the National Key Research and Development Program of China(Grant Nos.2014CB643702 and 2016YFB0700903)+1 种基金Key Research Program of the Chinese Academy of Sciences of Chinathe Inner Mongolia Science and Technology Major Project of China 2016
文摘The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction (XRD) reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets. Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd-Fe-B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve (FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.
基金supported by the Energy Foundation,Grant G-0309-07094Gong-Yi Program of China Ministry of Environmental Protection (No. 200809109)
文摘Objective To investigate the potential impact of ambient air pollution on public health under various traffic policies in Shanghai. Methods The exposure level of Shanghai residents to air pollution under various planned traffic scenarios was estimated, and the public health impact was assessed using concentration-response functions derived from available epidemiological studies. Results Our results showed that ambient air pollution in relation to traffic scenarios had a significant impact on the future health status of Shanghai residents. Compared with the base case scenario, implementation of various traffic scenarios could prevent 759-1574, 1885-2420, and 2277-2650 PM10-related avoidable deaths (mean-value) in 2010, 2015, and 2020, respectively. It could also decrease the incidence of several relevant diseases. Conclusion Our findings emphasize the need to consider air pollution-related health effects as an important impact of traffic policy in Shanghai.
基金State key laboratory of medical immunology open project (NKMI2019K07)
文摘Objective: To study the effect of RFTVR and CO2 laser on the improvement of symptoms, QOL and vas of patients with early laryngeal cancer. Methods: In this study, 120 patients with laryngeal cancer diagnosed and treated from January 2015 to December 2016 were taken as research objects. All patients were randomly divided into observation group and control group, 60 patients in each group. Patients in observation group were treated with RFTVR, and patients in control group were treated with new-type fiber-optic CO2 laser. The patients in the two groups were treated with cisplatin injection. The differences of perioperative indexes, swallowing function, pronunciation function, survival period, QOL score and VAS score between the two groups were compared. Results: There was no significant difference in the amount of intraoperative bleeding, operation time and hospitalization time between the two groups (P > 0.05);the correct swallowing of the observation group was significantly higher than that of the control group. After treatment, jitter, shimmer and HNR of the two groups were significantly improved, and jitter and shimmer of the observation group were significantly lower than that of the control group, and HNR was significantly higher than that of the control group (P < 0.05) The QOL score and VAS score of the two groups were significantly improved, and the QOL score of the observation group was significantly higher than that of the control group and the VAS score was significantly lower than that of the control group (P < 0.05);the total survival period and tumor free survival period of the observation group were significantly higher than that of the control group. Conclusion: Compared with CO2 laser treatment, the swallowing function and voice function of patients treated by low temperature plasma radiofrequency ablation were significantly improved, and the life quality of patients was significantly improved by prolonging the survival period of patients..
基金financially supported by the National Key R&D Program of China(No.2021YFB3503102)Zhejiang Provincial Key R&D Program(No.2021C01191)+2 种基金Science and Technology Innovation 2025 Major Project of Ningbo(No.2020Z037)Ningbo Key R&D Program(No.20222ZDYF020027)Ningbo Natural Science Foundation(No.2021J216)。
文摘Cu-rich cell boundary phase is difficult to precipitate evenly,resulting in a generally poor demagnetization curve squareness for Fe-rich Sm_(2)Co_(17)-type magnet,which is a key factor limiting the further improvement of magnetic energy product.In this study,we report that nanoscale strip-like ordered micro-domains distributed in1:7H disordered matrix phase of the solid solution precursor is a new factor significantly affecting the precipitation and distribution of the cell boundary phase.Long strip-like and continuous micro-twin structure with twin boundaries neatly perpendicular to the C-axis is observed after sintering treatment.After solution treatment,sequential and long strip-like micro-twins gradually transform into disordered state along the basal plane,forming narrow disordered 1:7H(TbCu_(7)-type structure)phase between the separated strip-like ordered micro-domains.This disordering transformation takes place via broken down of the long strip-like ordered micro-domains,which is accomplished by narrowing along the width direction followed by reduction of the length.Furthermore,a new model revealing the effect of the ordered micro-domains on the formation of the cell boundary phase is proposed.Antiphase boundaries enriched in Cu have already existed in the precursor with long strip-like ordered micro-domains.Therefore,the Cu-rich cell boundary phase acting as strong pinning centers cannot be precipitated homogeneously and distributed continuously after aging,resulting in a poor demagnetization curve squareness of Sm_(2)Co_(17)-type magnet.Our results indicate that significant broken down of the nanoscale ordered micro-domains in solution precursor is the key factor improving the distribution of cell boundary phase in Sm_(2)Co_(17)-type magnets.
基金supported by the Major Project of Science and Technology Innovation 2025 in NingboChina (Grant No. 2018B10086)+1 种基金the Major Project of Inner Mongolia Science and Technology,Zhejiang Provincial Public Welfare Technology Application Research Project,China (Grant No. LGG21E010007)the Key Research and Development Program of Shandong Province,China (Grant No. 2019JZZY010321)。
文摘We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.
基金financially supported by the National Natural Science Foundation of China(No.52201235)the Natural Science Foundation of Ningbo City(No.2022J308)+4 种基金the Science and Technology Program of Zhejiang Province(No.2024C01145)Ningbo Young Science and Technology Innovation Leading Talents(No.2023QL040)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Programthe"Pioneer"and"Leading Goose"R&D Program of Zhejiang(No.2022C01020)。
文摘The incorporation of the high-abundance rareearth element Y in(Nd,Y)-Fe-B sintered magnets offers an opportunity to reduce the cost of permanent magnetic materials,while promoting the balanced usage of rare-earth resources.However,the performance of(Nd,Y)-Fe-B magnets prepared using the conventional dual-main-phase(DMP)method undergoes significant degradation due to the strong diffusion ability of Y.To suppress the excessive diffusion of Y,this study presents a macroscopic lamellar magnet preparation scheme.Consequently,the micromagnetic simulations revealed that the multilayer magnets exhibited superior intrinsic performance compared to DMP magnets.Subsequently,the multilayer magnets were prepared by alternately stacking the 0%Y(0Y)and 30%Y(30Y)magnetic powders.The observed magnetic properties demonstrated that the coercvity of the three-layer magnet was~0.23 T higher than that of the DMP magnet,leading to improved coercivity stability at high temperatures.Furthermore,the microstructural observations and elemental analyses indicated the presence of a~200-μm-thick interface layer at the contact site between the 0Y and 30Y magnetic layers.Thus,the proposed approach effectively suppressed the excessive diffusion of Y in(Nd,Y)-Fe-B magnets,thereby enhancing the magnetic performance of the sintered magnets.