Petroleum is considered as one of the factors for the development of a nation as well as a cause of economic and political conflicts around the world because of the diversity of products obtained with their derivative...Petroleum is considered as one of the factors for the development of a nation as well as a cause of economic and political conflicts around the world because of the diversity of products obtained with their derivatives such as fuel for automotives and aviation, and manufacturing plastic parts, among others. The crude petroleum (usually oil, water and gas) found in an underground reservoir is transported to the surface by pipes, and has drawn the attention of researchers because of the problems generated in the pipeline with particular attention to the loss of pressure, friction and bubbles. For a fluid flow in plug regime, where many of the bubbles formed coalesce and produce bigger ones of sizes almost equal to the pipe diameter (Taylor bubble), severe instability in the flow is caused. In this context, the objective of this research has been to study the Taylor bubble flow in curved ducts using the software CFX. Results of the transient effects of the air concentration on the bubble air volumetric fraction, of the viscosity on bubble format, and pipe angle of 90? on bubble symmetry are presented and interpreted.展开更多
Environmental agencies do not allow effluents, from the petroleum productions, which contain oil concentrations that exceed the amounts permitted by the regulations. In recent time heavy oil operating petroleum indust...Environmental agencies do not allow effluents, from the petroleum productions, which contain oil concentrations that exceed the amounts permitted by the regulations. In recent time heavy oil operating petroleum industries are generating oil/water mixture by products, which are difficult to separate. Industrially, hydrocyclone is generally used to separate oil from an oil/water mixture. This is due to its high performance of separation, low cost of installation and maintenance. In the present work, therefore, the thermal fluid dynamics of water/ultra-viscous heavy oil separation process in a hydrocyclone has been studied. A steady state mathematical model which simulates the performance of a non-isothermal separation process is presented. The Eulerian-Eulerian approach for the interface of the phases involved (water/ultra-viscous heavy-oil) is used and the two-phase flow is considered as incompressible, viscous and turbulent. For carrying out numerical solutions of the governing equations the CFX11? commercial code was used. Results of the behavior of the two-fluid flow inside the hydrocyclone and separation efficiency are presented and analyzed. The role of the average temperature of the fluid, oil droplet diameter and the fluid mixture inlet velocity on the separation efficiency of the hydrocyclone are verified.展开更多
The transport of heavy and ultra-viscous oil employing the core-flow technique has been increasing recently, because it provides a greater reduction of the pressure drop during the flow. In this context, the effect of...The transport of heavy and ultra-viscous oil employing the core-flow technique has been increasing recently, because it provides a greater reduction of the pressure drop during the flow. In this context, the effect of temperature and the presence of gas on the thermo-hydrodynamics of a three-phase water-heavy oil-air flow in a horizontal pipe under the influence of gravity and drag forces, using the commercial software ANSYS CFX?, have been evaluated. The standard κ ? ε turbulence model, the mixture model for heavy oil-water system and the particle model for heavy oil-gas and water-gas systems, were adopted. Results of velocity, volume fraction, pressure and temperature fields of the phases present along the pipe are presented and discussed. It has been found that the presence of the air phase and the variation in the temperature affect the behavior of annular flow and pressure drop.展开更多
文摘Petroleum is considered as one of the factors for the development of a nation as well as a cause of economic and political conflicts around the world because of the diversity of products obtained with their derivatives such as fuel for automotives and aviation, and manufacturing plastic parts, among others. The crude petroleum (usually oil, water and gas) found in an underground reservoir is transported to the surface by pipes, and has drawn the attention of researchers because of the problems generated in the pipeline with particular attention to the loss of pressure, friction and bubbles. For a fluid flow in plug regime, where many of the bubbles formed coalesce and produce bigger ones of sizes almost equal to the pipe diameter (Taylor bubble), severe instability in the flow is caused. In this context, the objective of this research has been to study the Taylor bubble flow in curved ducts using the software CFX. Results of the transient effects of the air concentration on the bubble air volumetric fraction, of the viscosity on bubble format, and pipe angle of 90? on bubble symmetry are presented and interpreted.
文摘Environmental agencies do not allow effluents, from the petroleum productions, which contain oil concentrations that exceed the amounts permitted by the regulations. In recent time heavy oil operating petroleum industries are generating oil/water mixture by products, which are difficult to separate. Industrially, hydrocyclone is generally used to separate oil from an oil/water mixture. This is due to its high performance of separation, low cost of installation and maintenance. In the present work, therefore, the thermal fluid dynamics of water/ultra-viscous heavy oil separation process in a hydrocyclone has been studied. A steady state mathematical model which simulates the performance of a non-isothermal separation process is presented. The Eulerian-Eulerian approach for the interface of the phases involved (water/ultra-viscous heavy-oil) is used and the two-phase flow is considered as incompressible, viscous and turbulent. For carrying out numerical solutions of the governing equations the CFX11? commercial code was used. Results of the behavior of the two-fluid flow inside the hydrocyclone and separation efficiency are presented and analyzed. The role of the average temperature of the fluid, oil droplet diameter and the fluid mixture inlet velocity on the separation efficiency of the hydrocyclone are verified.
文摘The transport of heavy and ultra-viscous oil employing the core-flow technique has been increasing recently, because it provides a greater reduction of the pressure drop during the flow. In this context, the effect of temperature and the presence of gas on the thermo-hydrodynamics of a three-phase water-heavy oil-air flow in a horizontal pipe under the influence of gravity and drag forces, using the commercial software ANSYS CFX?, have been evaluated. The standard κ ? ε turbulence model, the mixture model for heavy oil-water system and the particle model for heavy oil-gas and water-gas systems, were adopted. Results of velocity, volume fraction, pressure and temperature fields of the phases present along the pipe are presented and discussed. It has been found that the presence of the air phase and the variation in the temperature affect the behavior of annular flow and pressure drop.