A new covariate dependent zero-truncated bivariate Poisson model is proposed in this paper employing generalized linear model. A marginal-conditional approach is used to show the bivariate model. The proposed model wi...A new covariate dependent zero-truncated bivariate Poisson model is proposed in this paper employing generalized linear model. A marginal-conditional approach is used to show the bivariate model. The proposed model with estimation procedure and tests for goodness-of-fit and under (or over) dispersion are shown and applied to road safety data. Two correlated outcome variables considered in this study are number of cars involved in an accident and number of casualties for given number of cars.展开更多
Covariate dependent Markov models dealing with estimation of transition probabilities for higher orders appear to be restricted because of over-parameterization. An improvement of the previous methods for handling run...Covariate dependent Markov models dealing with estimation of transition probabilities for higher orders appear to be restricted because of over-parameterization. An improvement of the previous methods for handling runs of events by expressing the conditional probabilities in terms of the transition probabilities generated from Markovian assumptions was proposed using Chapman-Kolmogorov equations. Parameter estimation of that model needs extensive pre-processing and computations to prepare data before using available statistical softwares. A computer program developed using SAS/IML to estimate parameters of the model are demonstrated, with application to Health and Retirement Survey (HRS) data from USA.展开更多
文摘A new covariate dependent zero-truncated bivariate Poisson model is proposed in this paper employing generalized linear model. A marginal-conditional approach is used to show the bivariate model. The proposed model with estimation procedure and tests for goodness-of-fit and under (or over) dispersion are shown and applied to road safety data. Two correlated outcome variables considered in this study are number of cars involved in an accident and number of casualties for given number of cars.
文摘Covariate dependent Markov models dealing with estimation of transition probabilities for higher orders appear to be restricted because of over-parameterization. An improvement of the previous methods for handling runs of events by expressing the conditional probabilities in terms of the transition probabilities generated from Markovian assumptions was proposed using Chapman-Kolmogorov equations. Parameter estimation of that model needs extensive pre-processing and computations to prepare data before using available statistical softwares. A computer program developed using SAS/IML to estimate parameters of the model are demonstrated, with application to Health and Retirement Survey (HRS) data from USA.