With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
Catalytic C–H activation-initiated annulation reactions have emerged as a versatile strategy for the efficient construction of diverse ring structural units and complex cyclic molecules in synthetic chemistry.Herein,...Catalytic C–H activation-initiated annulation reactions have emerged as a versatile strategy for the efficient construction of diverse ring structural units and complex cyclic molecules in synthetic chemistry.Herein,we describe a new Rh(Ⅲ)-catalyzed C–H activation-initiated transdiannulation reaction of N,Ndimethyl enaminones with gem-difluorocyclopropenes in the presence of H_(2)O,enabling a facile and oxygen transfer access to ring-fluorinated tricyclicγ-lactones with a 6-5 ring-junction tetrasubstituted stereocenter.This approach features bond-forming/annulation efficiency,good functional group tolerance and complete regioselectivity,which may include a complex process consisting of Rh(Ⅲ)-catalyzed C(sp2)–H activation,cyclic alkene insertion,defluorinated ring-opening of gem-difluorocyclopropane,intramolecular oxygen transfer,intramolecular cyclization and oxidative hydration.展开更多
A new Rh(Ⅲ)-catalyzed aldehydic C-H activation/[4+3]annulation cascade of N-sulfonyl-2-aminobenzaldehydes with gem-difluorocyclopropenes is reported for the first time,and used to produce a range of hitherto unreport...A new Rh(Ⅲ)-catalyzed aldehydic C-H activation/[4+3]annulation cascade of N-sulfonyl-2-aminobenzaldehydes with gem-difluorocyclopropenes is reported for the first time,and used to produce a range of hitherto unreported precedentedβ-monofluorinated benzo[b]azepin-5-ones with good yields and complete regioselectivity.This approach features a broad substrate scope,good functional group tolerance,and high regioselectivity,which may include Rh(Ⅲ)-catalyzed aldehydic C-H activation,tandem site-/regioselective insertion,defluorinated ring-scission,and 1,2-elimination.展开更多
The rhodium-catalyzed C-H bond activation and cyclization of 3-oxopent-4-enenitriles with alkynes proceed efficiently.Various 2H-pyrans with multiple substituents are achieved in good yields through regioselective for...The rhodium-catalyzed C-H bond activation and cyclization of 3-oxopent-4-enenitriles with alkynes proceed efficiently.Various 2H-pyrans with multiple substituents are achieved in good yields through regioselective formation of C-O and C-C bonds.Transformations involving hydroxy-alkynoates resulted in products with a furo[3,4-b]pyran skeleton via further intramolecular ester exchange processes.Different from the traditional"1-oxatrienes pathway",this method for the synthesis of useful 2H-pyrans possesses certain highlights in terms of readily available substrates,stable and easily derivatized products,gentle and convenient operation process,and step and atomeconomy.展开更多
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
基金financial support from the schoollevel research projects of Yancheng Institute of Technology(No.xjr2020044)the National Natural Science Foundation of China(Nos.22101152,22271123 and 21971090)。
文摘Catalytic C–H activation-initiated annulation reactions have emerged as a versatile strategy for the efficient construction of diverse ring structural units and complex cyclic molecules in synthetic chemistry.Herein,we describe a new Rh(Ⅲ)-catalyzed C–H activation-initiated transdiannulation reaction of N,Ndimethyl enaminones with gem-difluorocyclopropenes in the presence of H_(2)O,enabling a facile and oxygen transfer access to ring-fluorinated tricyclicγ-lactones with a 6-5 ring-junction tetrasubstituted stereocenter.This approach features bond-forming/annulation efficiency,good functional group tolerance and complete regioselectivity,which may include a complex process consisting of Rh(Ⅲ)-catalyzed C(sp2)–H activation,cyclic alkene insertion,defluorinated ring-opening of gem-difluorocyclopropane,intramolecular oxygen transfer,intramolecular cyclization and oxidative hydration.
基金financial support from the schoollevel research projects of Yancheng Institute of Technology(No.xjr2020044)the National Natural Science Foundation of China(Nos.22101151 and 21971090)。
文摘A new Rh(Ⅲ)-catalyzed aldehydic C-H activation/[4+3]annulation cascade of N-sulfonyl-2-aminobenzaldehydes with gem-difluorocyclopropenes is reported for the first time,and used to produce a range of hitherto unreported precedentedβ-monofluorinated benzo[b]azepin-5-ones with good yields and complete regioselectivity.This approach features a broad substrate scope,good functional group tolerance,and high regioselectivity,which may include Rh(Ⅲ)-catalyzed aldehydic C-H activation,tandem site-/regioselective insertion,defluorinated ring-scission,and 1,2-elimination.
基金supported by the National Natural Science Foundation of China(No.22101152)the Youth Talent Program Startup Foundation of Qufu Normal University(No.614201)the School-Level Research Projects of Yancheng Institute of Technology(No.xjr2020044).
文摘The rhodium-catalyzed C-H bond activation and cyclization of 3-oxopent-4-enenitriles with alkynes proceed efficiently.Various 2H-pyrans with multiple substituents are achieved in good yields through regioselective formation of C-O and C-C bonds.Transformations involving hydroxy-alkynoates resulted in products with a furo[3,4-b]pyran skeleton via further intramolecular ester exchange processes.Different from the traditional"1-oxatrienes pathway",this method for the synthesis of useful 2H-pyrans possesses certain highlights in terms of readily available substrates,stable and easily derivatized products,gentle and convenient operation process,and step and atomeconomy.