The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite de...The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%).展开更多
Arsenic is one of the main harmful elements in industrial wastewater.How to remove arsenic has always been one of the research hotspots in academic circles.In the process of arsenic removal by traditional sulfuration,...Arsenic is one of the main harmful elements in industrial wastewater.How to remove arsenic has always been one of the research hotspots in academic circles.In the process of arsenic removal by traditional sulfuration,the use of traditional sulfurizing agent will introduce new metal cations,which will affect the recycling of acid.In this study,phosphorus pentasulfide (P_(2)S_(5)) was used as sulfurizing agent,which hydrolyzed to produce H_(3)PO_(4) and H_(2)S without introducing new metal cations.The effect of ultrasound on arsenic removal by P_(2)S_(5) was studied.Under the action of ultrasound,the utilization of P_(2)S_(5) was improved and the reaction time was shortened.The effects of S/As molar ratio and reaction time on arsenic removal rate were investigated under ultrasonic conditions.Ultrasonic enhanced heat and mass transfer so that the arsenic removal rate of 94.5%could be achieved under the conditions of S/As molar ratio of 2.1:1 and reaction time of 20 min.In the first 60 min,under the same S/As molar ratio and reaction time,the ultrasonic hydrolysis efficiency of P_(2)S_(5) was higher.This is because P_(2)S_(5) forms ([(P_(2)S_(4))])^(2+)under the ultrasonic action,and the structure is damaged,which is easier to be hydrolyzed.In addition,the precipitation after arsenic removal was characterized and analyzed by X-ray diffraction,scanning electron microscope-energy dispersive spectrometer,X-ray fluorescence spectrometer and X-ray photoelectron spectroscopy.Our research avoids the introduction of metal cations in the arsenic removal process,and shortens the reaction time.展开更多
Defect density is one of the most significant characteristics of perovskite single crystals(PSCs)that determines their optical and electrical properties,but few strategies are available to tune this property.Here,we d...Defect density is one of the most significant characteristics of perovskite single crystals(PSCs)that determines their optical and electrical properties,but few strategies are available to tune this property.Here,we demonstrate that voltage regulation is an efficient method to tune defect density,as well as the optical and electrical properties of PSCs.A three-step carrier transport model of MAPbBr_(3) PSCs is proposed to explore the defect regulation mechanism and carrier transport dynamics via an applied bias.Dynamic and steady-state photoluminescence measurements subsequently show that the surface defect density,average carrier lifetime,and photoluminescence intensity can be efficiently tuned by the applied bias.In particular,when the regulation voltage is 20 V(electrical poling intensity is 0.167 Vμm^(−1)),the surface defect density of MAPbBr_(3) PSCs is reduced by 24.27%,the carrier lifetime is prolonged by 32.04%,and the PL intensity is increased by 112.96%.Furthermore,a voltage-regulated MAPbBr_(3) PSC memristor device shows an adjustable multiresistance,weak ion migration effect and greatly enhanced device stability.Voltage regulation is a promising engineering technique for developing advanced perovskite optoelectronic devices.展开更多
Organic-inorganic halide perovskites(OIHPs)are recognized as the promising next-generation X-ray detection materials.However,the device performance is largely limited by the ion migration issue of OIHPs.Here,we report...Organic-inorganic halide perovskites(OIHPs)are recognized as the promising next-generation X-ray detection materials.However,the device performance is largely limited by the ion migration issue of OIHPs.Here,we reported a simple atomistic surface passivation strategy with methylammonium iodide(MAI)to remarkably increase the ion migration activation energy of CH_(3)NH_(3)PbI_(3)single crystals.The amount of MAI deposited on the crystal surface is finely regulated by a self-assemble process to effectively suppress the metallic lead defects,while not introducing extra mobile ions,which results in significantly improved dark current stability of the coplanar-structure devices under a large electric field of 100Vmm^(-1).The X-ray detectors hence exhibit a record-high sensitivity above 700,000μC Gy^(-1)_(air) cm^(-2)under continuum X-ray irradiation with energy up to 50 keV,which enables an ultralow X-ray detection limit down to 1.5 nGy_(air)s^(-1).Our findings will allow for the dramatically reduced X-ray exposure of human bodies in medical imaging applications.展开更多
Here,we show that flexible perovskite solar cells(PSCs)with high operational stability and power conversion efficiency(PCE)approaching 20%were achieved by elastic grain boundary(GB)encapsulation.An introduction of tri...Here,we show that flexible perovskite solar cells(PSCs)with high operational stability and power conversion efficiency(PCE)approaching 20%were achieved by elastic grain boundary(GB)encapsulation.An introduction of trimethyltrivinylcyclotrisiloxane(V3D3)and solvent annealing(SA)resulted in an in situ cross-linking reaction between GBs and enlarged grain size that enabled oriented charge-transport properties to be achieved synchronously,leading to reduced sheet resistance with a high fill factor(FF)up to 82.93%in flexible PSCs.展开更多
Organic-inorganic halide perovskite single crystals(SCs)are promising materials for detecting ionizing radiation owing to their outstanding photoelectric conversion capability and inexpensive solution processability.H...Organic-inorganic halide perovskite single crystals(SCs)are promising materials for detecting ionizing radiation owing to their outstanding photoelectric conversion capability and inexpensive solution processability.However,the accuracy and stability of the detectors have been limited due to the charge traps and defects in SCs,especially when operated under high-precision photon-counting mode for energy spectrum acquisition.Here,we proposed a trap freezing deactivation route,which obviously suppressed dark current and noise by up to 97%and 92%,respectively.Furthermore,the bulk ion migration effect was essential for the ability to instantly self-heal defects induced by radiation damage at temperatures down to30C.Consequently,the detector exhibits a record high energy resolution of 7.5%at 59.5 keV for 241Amγ-ray source,which is the best solution-processed semiconductor radiation detectors at the same energy range.In addition,the detector maintains over 90%of its initial performance after 9 months of storage when tested in the air.Our results will represent a revision of the paradigm that high-spectral-resolution and robust radiation detectors can only be realized with high temperature grown inorganic semiconductor single crystals.展开更多
Solution-processed organic‒inorganic halide perovskite(OIHP)single crystals(SCs)have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost prepa...Solution-processed organic‒inorganic halide perovskite(OIHP)single crystals(SCs)have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost preparation.However,the energy resolution(ER)and stability of OIHP detectors still lag far behind those of melt-grown inorganic perovskite and commercial CdZnTe counterparts due to the absence of detector-grade high-quality OIHP SCs.Here,we reveal that the crystallinity and uniformity of OIHP SCs are drastically improved by relieving interfacial stress with a facial gel-confined solution growth strategy,thus enabling the direct preparation of large-area detector-grade SC wafers up to 4 cm with drastically suppressed electronic and ionic defects.The resultant radiation detectors show both a small dark current below 1 nA and excellent baseline stability of 4.0×10^(-8) nA cm^(-1) s^(-1) V^(-1),which are rarely realized in OIHP detectors.Consequently,a record high ER of 4.9% at 59.5 keV is achieved under a standard 241Am gamma-ray source with an ultralow operating bias of 5 V,representing the best gamma-ray spectroscopy performance among all solution-processed semiconductor radiation detectors ever reported.展开更多
In this work,a three-dimensional interwoven network composed of Van-PEG-MWCNTs was successfully constructed for the capture of Staphylococcus aureus.The capture behavior of this network against Staphylococcus aureus i...In this work,a three-dimensional interwoven network composed of Van-PEG-MWCNTs was successfully constructed for the capture of Staphylococcus aureus.The capture behavior of this network against Staphylococcus aureus in simulated solution and real milk was studied.Grafting Van-PEG on carbon nanotubes endowed carbon nanotubes with activity against Staphylococcus aureus,and improved the dispersibility of carbon nanotubes in solution system at the same time,so that they can be suspended in solution uniformly and form a loofah-like three-dimensional structure,enabling the grafted complex to capture Staphylococcus aureus efficiently in the solution system,even the low-level target bacteria can also be captured.The results showed that Van-PEG-MWCNTs played a role as molecular probes that can identify and capture Staphylococcus aureus from phosphate-buffered saline solution and fresh milk samples with a LOD of 2×10^(1) CFU/mL.This study demonstrated the potential application value of Van-PEG-MWCNTs for rapid and efficient detection of Staphylococcus aureus.展开更多
The ionizing radiation possesses extremely strong penetration capability,which poses serious risk on the health of the human body and jeopardize electronics.Here the authors demonstrate that MAPbl3/epoxy composites pr...The ionizing radiation possesses extremely strong penetration capability,which poses serious risk on the health of the human body and jeopardize electronics.Here the authors demonstrate that MAPbl3/epoxy composites prepared by a simple method show high radiation shielding performance.展开更多
Low-dimensional hybrid lead-halide perovskites with broadband white-light emission upon near-UV excitation have attracted immense scientific interest due to their potential application for the next generation of solid...Low-dimensional hybrid lead-halide perovskites with broadband white-light emission upon near-UV excitation have attracted immense scientific interest due to their potential application for the next generation of solid-state lighting as well as scintillators for radiation detection.Recently,broadband emission material is mostly reported in structural distorted perovskites.However,it is still unclear how to generate structural distortion in low-dimensional perovskites.展开更多
基金supported by the National Natural Science Foundation of China(22179050,21875089,51973080)。
文摘The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%).
基金support of the Basic Research Project of Science and Technology Planning Project of Yunnan Provincial Department of Science and Technology (202201AS070031)Yunnan Pronince Top young talents of The Ten Thousand Project+4 种基金the central government guides local science and technology development projects (CB22005R006A)the National Key Research and Development Program of China (2019YFC1904204)Kunming Key Laboratory of Special MetallurgyKunming Academician Workstation of Advanced Preparation for Super hard Materials FieldKunming Academician Workstation of Metallurgical Process Intensification。
文摘Arsenic is one of the main harmful elements in industrial wastewater.How to remove arsenic has always been one of the research hotspots in academic circles.In the process of arsenic removal by traditional sulfuration,the use of traditional sulfurizing agent will introduce new metal cations,which will affect the recycling of acid.In this study,phosphorus pentasulfide (P_(2)S_(5)) was used as sulfurizing agent,which hydrolyzed to produce H_(3)PO_(4) and H_(2)S without introducing new metal cations.The effect of ultrasound on arsenic removal by P_(2)S_(5) was studied.Under the action of ultrasound,the utilization of P_(2)S_(5) was improved and the reaction time was shortened.The effects of S/As molar ratio and reaction time on arsenic removal rate were investigated under ultrasonic conditions.Ultrasonic enhanced heat and mass transfer so that the arsenic removal rate of 94.5%could be achieved under the conditions of S/As molar ratio of 2.1:1 and reaction time of 20 min.In the first 60 min,under the same S/As molar ratio and reaction time,the ultrasonic hydrolysis efficiency of P_(2)S_(5) was higher.This is because P_(2)S_(5) forms ([(P_(2)S_(4))])^(2+)under the ultrasonic action,and the structure is damaged,which is easier to be hydrolyzed.In addition,the precipitation after arsenic removal was characterized and analyzed by X-ray diffraction,scanning electron microscope-energy dispersive spectrometer,X-ray fluorescence spectrometer and X-ray photoelectron spectroscopy.Our research avoids the introduction of metal cations in the arsenic removal process,and shortens the reaction time.
基金supported by the National Key Research and Development Program of China(2018YFB1107202,2017YFB1104700)the Natural Science Foundation of China(NSFC,91750205,61774155,51102107)the K.C.Wong Education Foundation(GJTD-2018-08).
文摘Defect density is one of the most significant characteristics of perovskite single crystals(PSCs)that determines their optical and electrical properties,but few strategies are available to tune this property.Here,we demonstrate that voltage regulation is an efficient method to tune defect density,as well as the optical and electrical properties of PSCs.A three-step carrier transport model of MAPbBr_(3) PSCs is proposed to explore the defect regulation mechanism and carrier transport dynamics via an applied bias.Dynamic and steady-state photoluminescence measurements subsequently show that the surface defect density,average carrier lifetime,and photoluminescence intensity can be efficiently tuned by the applied bias.In particular,when the regulation voltage is 20 V(electrical poling intensity is 0.167 Vμm^(−1)),the surface defect density of MAPbBr_(3) PSCs is reduced by 24.27%,the carrier lifetime is prolonged by 32.04%,and the PL intensity is increased by 112.96%.Furthermore,a voltage-regulated MAPbBr_(3) PSC memristor device shows an adjustable multiresistance,weak ion migration effect and greatly enhanced device stability.Voltage regulation is a promising engineering technique for developing advanced perovskite optoelectronic devices.
基金The authors acknowledge funding support from the National Natural Science Foundation of China(No.21875089)the National Key Research and Development Program of China(No.2018YFB2200105)+1 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.61721005)the Fundamental Research Funds for the Central Universities of China(No.2019QNA4009).
文摘Organic-inorganic halide perovskites(OIHPs)are recognized as the promising next-generation X-ray detection materials.However,the device performance is largely limited by the ion migration issue of OIHPs.Here,we reported a simple atomistic surface passivation strategy with methylammonium iodide(MAI)to remarkably increase the ion migration activation energy of CH_(3)NH_(3)PbI_(3)single crystals.The amount of MAI deposited on the crystal surface is finely regulated by a self-assemble process to effectively suppress the metallic lead defects,while not introducing extra mobile ions,which results in significantly improved dark current stability of the coplanar-structure devices under a large electric field of 100Vmm^(-1).The X-ray detectors hence exhibit a record-high sensitivity above 700,000μC Gy^(-1)_(air) cm^(-2)under continuum X-ray irradiation with energy up to 50 keV,which enables an ultralow X-ray detection limit down to 1.5 nGy_(air)s^(-1).Our findings will allow for the dramatically reduced X-ray exposure of human bodies in medical imaging applications.
文摘Here,we show that flexible perovskite solar cells(PSCs)with high operational stability and power conversion efficiency(PCE)approaching 20%were achieved by elastic grain boundary(GB)encapsulation.An introduction of trimethyltrivinylcyclotrisiloxane(V3D3)and solvent annealing(SA)resulted in an in situ cross-linking reaction between GBs and enlarged grain size that enabled oriented charge-transport properties to be achieved synchronously,leading to reduced sheet resistance with a high fill factor(FF)up to 82.93%in flexible PSCs.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LR22F040003)the National Natural Science Foundation of China(No.62075191,No.52003235,No.22179050,No.21875089,and No.61721005)+3 种基金China Postdoctoral Science Foundation(2022T150251)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ-FR003)the Fundamental Research Funds for the Central Universities(226-2022-00200)Zhejiang University K.P.Chao's High Technology Development Foundation(2022RC008).
文摘Organic-inorganic halide perovskite single crystals(SCs)are promising materials for detecting ionizing radiation owing to their outstanding photoelectric conversion capability and inexpensive solution processability.However,the accuracy and stability of the detectors have been limited due to the charge traps and defects in SCs,especially when operated under high-precision photon-counting mode for energy spectrum acquisition.Here,we proposed a trap freezing deactivation route,which obviously suppressed dark current and noise by up to 97%and 92%,respectively.Furthermore,the bulk ion migration effect was essential for the ability to instantly self-heal defects induced by radiation damage at temperatures down to30C.Consequently,the detector exhibits a record high energy resolution of 7.5%at 59.5 keV for 241Amγ-ray source,which is the best solution-processed semiconductor radiation detectors at the same energy range.In addition,the detector maintains over 90%of its initial performance after 9 months of storage when tested in the air.Our results will represent a revision of the paradigm that high-spectral-resolution and robust radiation detectors can only be realized with high temperature grown inorganic semiconductor single crystals.
基金supported by the National Natural Science Foundation of China(No.22179050,No.21875089,No.62075191,No.52003235,and No.61721005)the China Postdoctoral Science Foundation(No.2022T150251)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LR22F040003)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZFR003)the Fundamental Research Funds for the Central Universities(226-2022-00200).
文摘Solution-processed organic‒inorganic halide perovskite(OIHP)single crystals(SCs)have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost preparation.However,the energy resolution(ER)and stability of OIHP detectors still lag far behind those of melt-grown inorganic perovskite and commercial CdZnTe counterparts due to the absence of detector-grade high-quality OIHP SCs.Here,we reveal that the crystallinity and uniformity of OIHP SCs are drastically improved by relieving interfacial stress with a facial gel-confined solution growth strategy,thus enabling the direct preparation of large-area detector-grade SC wafers up to 4 cm with drastically suppressed electronic and ionic defects.The resultant radiation detectors show both a small dark current below 1 nA and excellent baseline stability of 4.0×10^(-8) nA cm^(-1) s^(-1) V^(-1),which are rarely realized in OIHP detectors.Consequently,a record high ER of 4.9% at 59.5 keV is achieved under a standard 241Am gamma-ray source with an ultralow operating bias of 5 V,representing the best gamma-ray spectroscopy performance among all solution-processed semiconductor radiation detectors ever reported.
文摘In this work,a three-dimensional interwoven network composed of Van-PEG-MWCNTs was successfully constructed for the capture of Staphylococcus aureus.The capture behavior of this network against Staphylococcus aureus in simulated solution and real milk was studied.Grafting Van-PEG on carbon nanotubes endowed carbon nanotubes with activity against Staphylococcus aureus,and improved the dispersibility of carbon nanotubes in solution system at the same time,so that they can be suspended in solution uniformly and form a loofah-like three-dimensional structure,enabling the grafted complex to capture Staphylococcus aureus efficiently in the solution system,even the low-level target bacteria can also be captured.The results showed that Van-PEG-MWCNTs played a role as molecular probes that can identify and capture Staphylococcus aureus from phosphate-buffered saline solution and fresh milk samples with a LOD of 2×10^(1) CFU/mL.This study demonstrated the potential application value of Van-PEG-MWCNTs for rapid and efficient detection of Staphylococcus aureus.
文摘The ionizing radiation possesses extremely strong penetration capability,which poses serious risk on the health of the human body and jeopardize electronics.Here the authors demonstrate that MAPbl3/epoxy composites prepared by a simple method show high radiation shielding performance.
基金supported by the National Natural Science Foundation of China(no.21875089).Q.D.conceived the idea,supervised the project,and conducted the initial experimentX.L.conducted most of the experiments and characterizations+3 种基金Z.Y.,C.G.,and H.L.contributed to materials design and synthesisM.H.,C.W.,and Y.S.contributed to the test of TRPLB.L.contributed to the single-crystal data and structure refinementsQ.D.and X.L wrote the paper.All authors have given approval to the final version of the manuscript.
文摘Low-dimensional hybrid lead-halide perovskites with broadband white-light emission upon near-UV excitation have attracted immense scientific interest due to their potential application for the next generation of solid-state lighting as well as scintillators for radiation detection.Recently,broadband emission material is mostly reported in structural distorted perovskites.However,it is still unclear how to generate structural distortion in low-dimensional perovskites.