Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preforme...Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preformed albumin corona of albumin-selective NPs.Herein,we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate(SA)onto PLGA NPs(SP NPs)surface,taking albuminnonselective PLGA NPs as control.PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm.The corresponding albumin-coating PLGA NPs(PLGA@BSA NPs)and albumin-coating SP NPs(SP@BSA NPs)were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution,respectively.The impact of albumin corona on particle characteristics,stability,photothermal effect,cytotoxicity,cell uptake,spheroid penetration and pharmacokinetics was investigated.In line with previous findings of preformed albumin coating,PLGA@BSA NPs exhibited higher stability,cytotoxicity,cell internalization and spheroid penetration performances in vitro,and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs,but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs.Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.展开更多
Although it is reported that the targeting ability of hyaluronic acid(HA)-based nanoparticles(NPs) is molecular weight(MW) dependent,the influence of HA MW on targeting efficiency of HA-functionalized NPs and the unde...Although it is reported that the targeting ability of hyaluronic acid(HA)-based nanoparticles(NPs) is molecular weight(MW) dependent,the influence of HA MW on targeting efficiency of HA-functionalized NPs and the underlying mechanism remain elusive. In this study,we constituted three HA-functionalized Dox-loaded NPs(Dox/HCVs) different HA MWs(7,63,and 102 k Da) and attempted to illustrate the effects of HA MW on the targeting efficiency.The three Dox/HCVs had similar physiochemical and pharmaceutical characteristics,but showed different affinity to CD44 receptor. Furthermore,Dox/HCV-63 exerted the best targeting effect and the highest cytotoxicity compared with Dox/HCV-7 and Dox/HCV-102. It was interesting to found that both the HA-CD44 binding affinity and induced CD44 clustering by HA-based NPs were HA MW-dependent,the two of which determine the apparent targeting efficacy of Dox/HCV NPs in the conflicting directions. Those results laid a good foundation for rationally designing HA-based NPs in cancer therapy.展开更多
One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed...One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed the heterogeneity in terms of redox homeostasis level.We previously found that the disulfide bond-linkage demonstrates surprising oxidationsensitivity to form the hydrophilic sulfoxide and sulphone groups.Herein,we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a(PPa)to achieve light-activatable cascade drug release and enhance therapeutic efficacy.The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor,but also respond to the exogenous oxidant(singlet oxygen)elicited by photosensitizers.Once the prodrug nanoparticles(NPs)are activated under irradiation,they would undergo an oxidative self-strengthened process,resulting in a facilitated drug cascade release.The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation.In vivo,the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site.The PPa@PTXS-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4 T1 tumors.Therefore,this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy.展开更多
A simple and rapid UPLC–MS/MS method to simultaneously determine gemcitabine and its L-carnitine ester derivative(2’-deoxy-2’, 2’-difluoro-N-((4-amino-4-oxobutanoyl) oxy)-4-(trimethyl amm-onio) butanoate-cytidine,...A simple and rapid UPLC–MS/MS method to simultaneously determine gemcitabine and its L-carnitine ester derivative(2’-deoxy-2’, 2’-difluoro-N-((4-amino-4-oxobutanoyl) oxy)-4-(trimethyl amm-onio) butanoate-cytidine, JDR) in rat plasma was developed and validated.The conventional plasma sample preparation method of nucleoside analogues is solidphase extraction(SPE) which is time-consuming and cost-expensive. In this study, gradient elution with small particles size solid phase was applied to effectively separate gemcitabine and JDR, and protein precipitation pretreatment was adopted to remove plasma protein and extract the analytes with high recovery(>81%). Method validation was performed as per the FDA guidelines, and the standard curves were found to be linear in the range of 5–4000 ng/ml for JDR and 4–4000 ng/ml for gemcitabine, respectively. The lower limit of quantitation(LLOQ)of gemcitabine and JDR was 4 and 5 ng/ml, respectively. The intra-day and inter-day precision and accuracy results were within the acceptable limits. Finally, the developed method was successfully applied to investigate the pharmacokinetic studies of JDR and gemcitabine after oral administration to rats.展开更多
Monocarboxylate transporter 1(MCT1)is responsible for oral absorption of short-chain monocarboxylic acids from small intestine,hence,it’s likely to serve as an ideal design target for the development of oral prodrugs...Monocarboxylate transporter 1(MCT1)is responsible for oral absorption of short-chain monocarboxylic acids from small intestine,hence,it’s likely to serve as an ideal design target for the development of oral prodrugs.However,potential application of MCT1 to facilitate the oral delivery is still unclear.Irregular oral absorption,poor permeability and bioavailability greatly limit the oral delivery efficiency of 5-fluorouracil(5-FU).Herein,we design three 5-FU-fatty acid conjugates targeting intestinal MCT1 with different lipophilic linkages.Interestingly,due to high MCT1 affinity and good gastrointestinal stability,5-FUoctanedioic acid monoester prodrug exhibited significant improvement in membrane permeability(13.1-fold)and oral bioavailability(4.1-fold)compared to 5-FU.More surprisingly,stability experiment in intestinal homogenates showed that 5-FU prodrugs could be properly activated to release 5-FU within intestinal cells,which provides an ideal foundation for the improvement of oral bioavailability.In summary,good gastrointestinal stability,high membrane permeability and appropriate intestinal cell bioactivation are the important factors for high-efficiency 5-FU oral prodrugs,and such work provides a good platform for the development of novel oral prodrugs targeting intestinal transporters.展开更多
Hyaluronic acid(HA) is a natural ligand of tumor-targeted drug delivery systems(DDS) due to the relevant CD44 receptor overexpressed on tumor cell membranes. However, other HA receptors(HARE and LYVE-1) are also overe...Hyaluronic acid(HA) is a natural ligand of tumor-targeted drug delivery systems(DDS) due to the relevant CD44 receptor overexpressed on tumor cell membranes. However, other HA receptors(HARE and LYVE-1) are also overexpressing in the reticuloendothelial system(RES). Therefore,polyethylene glycol(PEG) modification of HA-based DDS is necessary to reduce RES capture.Unfortunately, pegylation remarkably inhibits tumor cellular uptake and endosomal escapement,significantly compromising the in vivo antitumor efficacy. Herein, we developed a Dox-loaded HA-based transformable supramolecular nanoplatform(Dox/HCVBP) to overcome this dilemma. Dox/HCVBP contains a tumor extracellular acidity-sensitive detachable PEG shell achieved by a benzoic imine linkage.The in vitro and in vivo investigations further demonstrated that Dox/HCVBP could be in a "stealth" state at blood stream for a long circulation time due to the buried HA ligands and the minimized nonspecific interaction by PEG shell. However, it could transform into a "recognition" state under the tumor acidic microenvironment for efficient tumor cellular uptake due to the direct exposure of active targeting ligand HA following PEG shell detachment. Such a transformative concept provides a promising strategy to resolve the dilemma of natural ligand-based DDS with conflicting two processes of tumor cellular uptake and in vivo nonspecific biodistribution.展开更多
Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evi...Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evidence that the ubiquitin-proteasome pathway(UPP) significantly impedes PDT by preventing the enrichment of ROS-damaged proteins in tumor cells. To tackle this challenge, we report a facile dual-drug nanoassembly based on the discovery of an interesting co-assembly of bortezomib(BTZ, a proteasome inhibitor) and pyropheophorbide a(PPa) for proteasome inhibition-mediated PDT sensitization.The precisely engineered nanoassembly with the optimal dose ratio of BTZ and PPa demonstrates multiple advantages, including simple fabrication, high drug co-loading efficiency, flexible dose adjustment,good colloidal stability, long systemic circulation, favorable tumor-specific accumulation, as well as significant enrichment of ROS-damaged proteins in tumor cells. As a result, the cooperative nanoassembly exhibits potent synergistic antitumor activity in vivo. This study provides a novel dual-drug engineering modality for multimodal cancer treatment.展开更多
Core-shell structured mesoporous silica nanoparticles have been firstly synthesized with the new template from L-leucine methyl ester hydrochloride(H-Leu-OMe·HCl).LMSNs were characterized by transmission electron...Core-shell structured mesoporous silica nanoparticles have been firstly synthesized with the new template from L-leucine methyl ester hydrochloride(H-Leu-OMe·HCl).LMSNs were characterized by transmission electron microscopy(TEM),nitrogen adsorption/desorption,and small-angle X-ray diffraction(SAXRD),demonstrating a well-ordered mesostructure.After loading doxorubicin hydrochloride(Dox) into pores,considerable loading capacity of 30.5% and favorable cumulative release amount were obtained.MTT assay suggested that Dox-loaded LMSNs demonstrated great promise to anti-tumor.The use of MSNs with the synthesized template,as a drug delivery carrier,will exte nd the pharmaceutical applications of silica materials.展开更多
The tumor microenvironment-sensitive prodrug-based nanoparticles(NPs)have emerged as a promising drug delivery system(DDS).The shape of these particles plays a crucial role in their in vivo behavior.However,non-spheri...The tumor microenvironment-sensitive prodrug-based nanoparticles(NPs)have emerged as a promising drug delivery system(DDS).The shape of these particles plays a crucial role in their in vivo behavior.However,non-spherical organic NPs are rarely reported due to the inherent flexibility and variability of organic molecules.Herein,we fabricate reduction-sensitive prodrug NPs and explore the impact of their morphology properties on their in vivo fate.Prodrugs are self-assembled into spherical NPs with distearoyl phosphoethanolamine-PEG2000(DSPE-PEG2k),or into rod-shaped NPs with D-a-tocopherol polyethylene glycol 2000 succinate(TPGS2k)due to the stronger binding energy.In comparison with spherical NPs,the endocytosis of rod-shaped NPs predominantly relies on caveolae-mediated pathways rather than clathrin-mediated ones,potentially avoiding degradation by lysosomes.Additionally,the rod-shaped NPs exhibit prolonged circulation time,increased tumor accumulation,and enhanced antitumor ability.Our current findings reveal the significant effect of particle shape on the behavior of prodrug NPs and introduce a novel paradigm for high-efficacy cancer therapy of prodrug NPs.展开更多
基金financially supported by the National Basic Research Program of China(973 Program,No.2015CB932100)National Natural Science Foundation of China(No.81703451,81573371,81473164)。
文摘Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preformed albumin corona of albumin-selective NPs.Herein,we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate(SA)onto PLGA NPs(SP NPs)surface,taking albuminnonselective PLGA NPs as control.PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm.The corresponding albumin-coating PLGA NPs(PLGA@BSA NPs)and albumin-coating SP NPs(SP@BSA NPs)were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution,respectively.The impact of albumin corona on particle characteristics,stability,photothermal effect,cytotoxicity,cell uptake,spheroid penetration and pharmacokinetics was investigated.In line with previous findings of preformed albumin coating,PLGA@BSA NPs exhibited higher stability,cytotoxicity,cell internalization and spheroid penetration performances in vitro,and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs,but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs.Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.
基金supported by the National Basic Research Program of China (No. 81573371)the key projects of Liaoning Province Department of Education (No. 2017LZD03)
文摘Although it is reported that the targeting ability of hyaluronic acid(HA)-based nanoparticles(NPs) is molecular weight(MW) dependent,the influence of HA MW on targeting efficiency of HA-functionalized NPs and the underlying mechanism remain elusive. In this study,we constituted three HA-functionalized Dox-loaded NPs(Dox/HCVs) different HA MWs(7,63,and 102 k Da) and attempted to illustrate the effects of HA MW on the targeting efficiency.The three Dox/HCVs had similar physiochemical and pharmaceutical characteristics,but showed different affinity to CD44 receptor. Furthermore,Dox/HCV-63 exerted the best targeting effect and the highest cytotoxicity compared with Dox/HCV-7 and Dox/HCV-102. It was interesting to found that both the HA-CD44 binding affinity and induced CD44 clustering by HA-based NPs were HA MW-dependent,the two of which determine the apparent targeting efficacy of Dox/HCV NPs in the conflicting directions. Those results laid a good foundation for rationally designing HA-based NPs in cancer therapy.
基金financially supported by National Nature Science Foundation of China(No.81872816,81703451)Liaoning Revitalization Talents Program,No XLYC1808017+2 种基金Key projects of Technology bureau in Shenyang,No18400408Key projects of Liaoning Province Department of Education,No.2017LZD03supported by Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region。
文摘One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed the heterogeneity in terms of redox homeostasis level.We previously found that the disulfide bond-linkage demonstrates surprising oxidationsensitivity to form the hydrophilic sulfoxide and sulphone groups.Herein,we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a(PPa)to achieve light-activatable cascade drug release and enhance therapeutic efficacy.The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor,but also respond to the exogenous oxidant(singlet oxygen)elicited by photosensitizers.Once the prodrug nanoparticles(NPs)are activated under irradiation,they would undergo an oxidative self-strengthened process,resulting in a facilitated drug cascade release.The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation.In vivo,the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site.The PPa@PTXS-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4 T1 tumors.Therefore,this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy.
基金the financial support from the National Natural Science Foundation of China (No. 81173009)Technology Bureau in Shenyang (No. ZCJJ2013402)+2 种基金the financial support from Project for New Century Excellent Talents of Ministry of Education (No.NCET-12-1015)Specific Science Foundation of Shenyang Pharmaceutical University (No. ZCJJ2014409)National Undergraduate Training Program for Innovation and Entrepreneurship (2016)
文摘A simple and rapid UPLC–MS/MS method to simultaneously determine gemcitabine and its L-carnitine ester derivative(2’-deoxy-2’, 2’-difluoro-N-((4-amino-4-oxobutanoyl) oxy)-4-(trimethyl amm-onio) butanoate-cytidine, JDR) in rat plasma was developed and validated.The conventional plasma sample preparation method of nucleoside analogues is solidphase extraction(SPE) which is time-consuming and cost-expensive. In this study, gradient elution with small particles size solid phase was applied to effectively separate gemcitabine and JDR, and protein precipitation pretreatment was adopted to remove plasma protein and extract the analytes with high recovery(>81%). Method validation was performed as per the FDA guidelines, and the standard curves were found to be linear in the range of 5–4000 ng/ml for JDR and 4–4000 ng/ml for gemcitabine, respectively. The lower limit of quantitation(LLOQ)of gemcitabine and JDR was 4 and 5 ng/ml, respectively. The intra-day and inter-day precision and accuracy results were within the acceptable limits. Finally, the developed method was successfully applied to investigate the pharmacokinetic studies of JDR and gemcitabine after oral administration to rats.
基金financially Supported by National Nature Sci-ence Foundation of China(No.81773656,U1608283,81573497)Liaoning Revitalization Talents Program,No XLYC1808017,Key projects of Technology bureau in Shenyang,No18400408Key projects of Liaoning Province Department of Education,No.2017LZD03
文摘Monocarboxylate transporter 1(MCT1)is responsible for oral absorption of short-chain monocarboxylic acids from small intestine,hence,it’s likely to serve as an ideal design target for the development of oral prodrugs.However,potential application of MCT1 to facilitate the oral delivery is still unclear.Irregular oral absorption,poor permeability and bioavailability greatly limit the oral delivery efficiency of 5-fluorouracil(5-FU).Herein,we design three 5-FU-fatty acid conjugates targeting intestinal MCT1 with different lipophilic linkages.Interestingly,due to high MCT1 affinity and good gastrointestinal stability,5-FUoctanedioic acid monoester prodrug exhibited significant improvement in membrane permeability(13.1-fold)and oral bioavailability(4.1-fold)compared to 5-FU.More surprisingly,stability experiment in intestinal homogenates showed that 5-FU prodrugs could be properly activated to release 5-FU within intestinal cells,which provides an ideal foundation for the improvement of oral bioavailability.In summary,good gastrointestinal stability,high membrane permeability and appropriate intestinal cell bioactivation are the important factors for high-efficiency 5-FU oral prodrugs,and such work provides a good platform for the development of novel oral prodrugs targeting intestinal transporters.
基金supported by the National Basic Research Program of China(No.81573371)the Key Projects of Liaoning Province Department of Education(No.2017LZD03,China)
文摘Hyaluronic acid(HA) is a natural ligand of tumor-targeted drug delivery systems(DDS) due to the relevant CD44 receptor overexpressed on tumor cell membranes. However, other HA receptors(HARE and LYVE-1) are also overexpressing in the reticuloendothelial system(RES). Therefore,polyethylene glycol(PEG) modification of HA-based DDS is necessary to reduce RES capture.Unfortunately, pegylation remarkably inhibits tumor cellular uptake and endosomal escapement,significantly compromising the in vivo antitumor efficacy. Herein, we developed a Dox-loaded HA-based transformable supramolecular nanoplatform(Dox/HCVBP) to overcome this dilemma. Dox/HCVBP contains a tumor extracellular acidity-sensitive detachable PEG shell achieved by a benzoic imine linkage.The in vitro and in vivo investigations further demonstrated that Dox/HCVBP could be in a "stealth" state at blood stream for a long circulation time due to the buried HA ligands and the minimized nonspecific interaction by PEG shell. However, it could transform into a "recognition" state under the tumor acidic microenvironment for efficient tumor cellular uptake due to the direct exposure of active targeting ligand HA following PEG shell detachment. Such a transformative concept provides a promising strategy to resolve the dilemma of natural ligand-based DDS with conflicting two processes of tumor cellular uptake and in vivo nonspecific biodistribution.
基金financially supported by the Liaoning Revitalization Talents Program (No. XLYC1907129)the Excellent Youth Science Foundation of Liaoning Province (No. 2020-YQ-06)the China Postdoctoral Science Foundation (No. 2020M670794)。
文摘Photodynamic therapy(PDT) has been widely investigated for cancer therapy. The intracellular accumulation of reactive oxygen species(ROS)-damaged protein facilitates tumor cell apoptosis. However, there is growing evidence that the ubiquitin-proteasome pathway(UPP) significantly impedes PDT by preventing the enrichment of ROS-damaged proteins in tumor cells. To tackle this challenge, we report a facile dual-drug nanoassembly based on the discovery of an interesting co-assembly of bortezomib(BTZ, a proteasome inhibitor) and pyropheophorbide a(PPa) for proteasome inhibition-mediated PDT sensitization.The precisely engineered nanoassembly with the optimal dose ratio of BTZ and PPa demonstrates multiple advantages, including simple fabrication, high drug co-loading efficiency, flexible dose adjustment,good colloidal stability, long systemic circulation, favorable tumor-specific accumulation, as well as significant enrichment of ROS-damaged proteins in tumor cells. As a result, the cooperative nanoassembly exhibits potent synergistic antitumor activity in vivo. This study provides a novel dual-drug engineering modality for multimodal cancer treatment.
基金supported by the Career Development Support Plan for Young and Middle-aged Teachers in Shenyang Pharmaceutical University (No.ZQN2018005)。
文摘Core-shell structured mesoporous silica nanoparticles have been firstly synthesized with the new template from L-leucine methyl ester hydrochloride(H-Leu-OMe·HCl).LMSNs were characterized by transmission electron microscopy(TEM),nitrogen adsorption/desorption,and small-angle X-ray diffraction(SAXRD),demonstrating a well-ordered mesostructure.After loading doxorubicin hydrochloride(Dox) into pores,considerable loading capacity of 30.5% and favorable cumulative release amount were obtained.MTT assay suggested that Dox-loaded LMSNs demonstrated great promise to anti-tumor.The use of MSNs with the synthesized template,as a drug delivery carrier,will exte nd the pharmaceutical applications of silica materials.
基金This research was supported by National Natural Science Foundation of China(Nos.82273874 and 82404561)Liaoning Revitalization Talents Program(No.XLYC22202019)+4 种基金the China National Postdoctoral Program for Innovative Talents(No.BX20240233)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20240179)the China Postdoctoral Science Foundation(No.2023MD744230)Doctoral Scientific Research Launching Fund Project of Liaoning province(No.2024-BS-075)Prospective Basic research project of 2024 Scientific Research Project of Liaoning Department of Education(No.LJ212410163042).
文摘The tumor microenvironment-sensitive prodrug-based nanoparticles(NPs)have emerged as a promising drug delivery system(DDS).The shape of these particles plays a crucial role in their in vivo behavior.However,non-spherical organic NPs are rarely reported due to the inherent flexibility and variability of organic molecules.Herein,we fabricate reduction-sensitive prodrug NPs and explore the impact of their morphology properties on their in vivo fate.Prodrugs are self-assembled into spherical NPs with distearoyl phosphoethanolamine-PEG2000(DSPE-PEG2k),or into rod-shaped NPs with D-a-tocopherol polyethylene glycol 2000 succinate(TPGS2k)due to the stronger binding energy.In comparison with spherical NPs,the endocytosis of rod-shaped NPs predominantly relies on caveolae-mediated pathways rather than clathrin-mediated ones,potentially avoiding degradation by lysosomes.Additionally,the rod-shaped NPs exhibit prolonged circulation time,increased tumor accumulation,and enhanced antitumor ability.Our current findings reveal the significant effect of particle shape on the behavior of prodrug NPs and introduce a novel paradigm for high-efficacy cancer therapy of prodrug NPs.