Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns...Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China.展开更多
Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficie...Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficient and inexpensive oxygen electrocatalysts as replacements for precious metal-based catalysts is vitally important for large-scale practical application in the future. A bifunctional oxygen electrocatalyst based on FeCo nanoparticles/N-doped carbon core-shell spheres supported on N-doped graphene sheets was prepared via one-step pyrolysis of graphitic carbon nitride and acetylacetonates. The optimized product exhibited an oxygen electrode activity of 0.87 V and excellent durability. The remarkable performance is mainly attributed to the synergetic effect arising from the FeCo nanoparticles and N-doped carbon shell. This study introduces an inexpensive and simple way to develop highly active bifunctional oxygen electrocatalysts.展开更多
Earth-abundant electrocatalysts for large-current-density water splitting under alkaline condition are desirable.Oxygen evolution reaction,which is a bottleneck of the overall water splitting,faces the problems of com...Earth-abundant electrocatalysts for large-current-density water splitting under alkaline condition are desirable.Oxygen evolution reaction,which is a bottleneck of the overall water splitting,faces the problems of complicated reconstruction and deficiency in rational design of active sites.Herein,we report a series of transition metal chalcogenides for alkaline OER.Among them,FeCoNi(S)displayed a low overpotential of 293 m V to deliver a current density of 500 m A cm^(-2),which is in the top level of non-precious metal based OER electrocatalysts.A combination of(ex)in situ characterizations and DFT calculation shows that Ni(Fe,Co)trimetallic oxyhydroxides were the active sites for highly-efficient OER.Furthermore,for FeCoNi(S),when used as a bifunctional catalyst for water splitting,it only required a cell voltage of 1.84 V to deliver~500 m A cm^(-2) with extraordinary long-term stability over 2000 h.This work provides the comprehension of high-efficiency,robust catalysts for OER and overall water splitting at large current densities in alkaline media.展开更多
Designing non-noble metal electrocatalysts toward alkaline hydrogen evolution reaction(HER)with high performance at a large current density is urgent.Herein,a CoO/CoP heterostructure catalyst(termed POZ)was designed b...Designing non-noble metal electrocatalysts toward alkaline hydrogen evolution reaction(HER)with high performance at a large current density is urgent.Herein,a CoO/CoP heterostructure catalyst(termed POZ)was designed by a phosphating strategy.The strong electron transfer on the interface of CoO/CoP was experimentally and theoretically proven.POZ showed a low overpotential of 236 mV at 400 mA/cm^(2),which was 249 mV lower than non-phosphated sample.It also exhibited a remarkable solar-to-hydrogen conversion efficiency of 10.5%.In this work,the construction of CoO/CoP interface realized by a simple phosphating strategy could provide an important reference to boost the HER performance on those materials not merely metal oxides.展开更多
Single atom catalysts(SACs) with isolated metal atoms dispersed on supports exhibit distinctive performances for electrocatalysis reactions.The designable realization of well-dispersed single metal atoms is still a gr...Single atom catalysts(SACs) with isolated metal atoms dispersed on supports exhibit distinctive performances for electrocatalysis reactions.The designable realization of well-dispersed single metal atoms is still a great challenge owing to their ease of aggregation.Here,Mo single atomic sites(Mo-N_(3)C)combined with some ultrasmall Mo_(2)C/MoN clusters(Mo-SA/Mo_(2)C-MoN-Cs,mean diameter <2 nm) on nitrogen-doped porous carbon were synthesized via a simple pyrolysis of bimetallic Zn/Mo metalorganic frameworks.X-ray absorption near edge spectra(XANES) in combination with various characterizations show that most of Mo species in sample exist in the form of single sites and the exact structure is Mo-N_(3)C.Density functional theory(DFT) calculation further shows that as the number of Ncoordination in the Mo-NxC moieties increases,the positive cha rge of Mo atoms increases.The single Mo atoms in Mo-N_(3)C have the best capability of N_(2) adsorption,which may serve as main active sites for further electrochemical N2 reduction.展开更多
Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a sca...Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a scalable one pot solid pyrolysis process. The sample exhibits efficient bifunctional OER/ORR activiW in alkaline, mainly ascribed to the unique micro-mesoporous structure (1-3 nm), high population of graphitic-N doping (up to 49.0%), abundant defects and the encapsulated Co nanoparticles with graphitized carbon. The according rechargeahle liquid Zn-air batteries showed excellent performance (maximum power density of 154.0 mWcm-2: energy density of 773Wh kg -1 at 5 mAcm 2 and charging-discharging cycling stability over 100 cycles). As a proof-of-concept, the flexible, rechargeable all-solid-state Zn-air batteries were constructed, and displayed a maximum power density as high as 45.9 mW cm 2 among the top level of those reported previously.展开更多
Nanoparticles are extensively introduced to improve the mechanical,physical,and chemical properties of alloys.In the present study,the underlying nano-refinement mechanisms of face-centered cubic Zr(Fe,Cr)_(2)secondar...Nanoparticles are extensively introduced to improve the mechanical,physical,and chemical properties of alloys.In the present study,the underlying nano-refinement mechanisms of face-centered cubic Zr(Fe,Cr)_(2)secondary phase particles(SPPs)that precipitated in Zircaloy-4 alloy under high-temperature compression were investigated in detail by utilizing high-resolution transmission electron microscopy(HRTEM)and conventional TEM techniques.The frequently observed Zr(Fe,Cr)_(2)SPPs were incoherent with the matrix and exhibited brittle fracture behaviors without measurable plasticity.HRTEM observations revealed two mechanisms underlying the nano-refinement of incoherent micro-sized SPPs via localized shear fracture on{11¯2}SPP and nanoprecipitate-assisted bending fracture,respectively.The latter was,for the first time,found to occur when the movements of large SPPs were blocked by nanometer-sized SPP during alloy deformation.Accordingly,two force models were proposed to visualize their potential nano-refinement processes.The knowledge attained from this study sheds new light on the deformation behaviors of Zr(Fe,Cr)_(2)SPPs and their associated size refinement mechanisms under high-temperature compression,and is expected to greatly benefit the process optimization of zirconium alloys to achieve precipitate nano-refinement.展开更多
The comparative study of submerged arc welding(SAW)and laser hybrid welding(LHW)was carried out for a 690 MPa high strength steel with thickness of 20 mm.Microstructure and ductile–brittle transition temperature(DBTT...The comparative study of submerged arc welding(SAW)and laser hybrid welding(LHW)was carried out for a 690 MPa high strength steel with thickness of 20 mm.Microstructure and ductile–brittle transition temperature(DBTT)evolution in welded zone were elucidated from the aspect of crystallographic structure,particularly,digitization and visualization of 24 variants.The impact toughness of each micro zone in LHW joint is better than that of SAW,in which the DBTT of equivalent fusion line and heat-affected zone(HAZ)can reach−70 and−80℃,while that of SAW is only−50℃.LHW technology induces narrowing of the HAZ and refining of the microstructure obtained in weld metal and HAZ.Meanwhile,the austenite grain size and transformation driving force in the coarse grained heat-affected zone(CGHAZ)are reduced and increased,respectively.It makes variant selection mechanism occurring in CGHAZ of LHW dominate by close-packed plane grouping,which promotes lath bainite formation with high density of high angle grain boundary,especially block boundary dominated by V1/V2 pair.While for SAW,the lower transformation driving force inferred from the large amount of retained austenite in CGHAZ induces Bain grouping of variants,and thus triggers the brittle crack propagating straightly in granular bainite,resulting in lower impact toughness and higher DBTT.展开更多
Mechanism of FCC→HCP reverse phase transformation in face-centered cubic zirconium(FCC-Zr)along with a concomitant 70.5°rotation ofα-Zr matrix were investigated in zircaloy-4(Zr-4)cladding tube by using transmi...Mechanism of FCC→HCP reverse phase transformation in face-centered cubic zirconium(FCC-Zr)along with a concomitant 70.5°rotation ofα-Zr matrix were investigated in zircaloy-4(Zr-4)cladding tube by using transmission electron microscopy(TEM).Results showed that the interaction among a secondary phase particle(SPP)and three FCC-Zr grains resulted in the formation of cross stacking faults in SPP and exerted a drag force on minor axis of the adjacent FCC-Zr phase.Moreover,when the shear stress along[112]_(FCC-Zr)direction was large enough to initiate the emission of 1/6[112]Shockley partial dislocation on every other(111)_(FCC-Zr)close-packed plane,the stacking sequence would change from ABC ABCA to AB ABABA viz.(0001)planes of the daughter HCP phase.Thus,FCC→HCP reverse phase transformation in FCC-Zr was presented.展开更多
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)the Since&Technology Department of Sichuan Province Project(Grant No.2021YFH0010)the High‐End Foreign Experts Program of the Yunnan Revitalization Talents Support Plan of Yunnan Province.
文摘Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China.
基金The work was financially supported by the National Natural Science Foundation of China (No. 51173202), Innovation Foundation for Superior Postgraduate of National University of Defense Technology, Hunan Provincial Innovation Foundation for Postgraduate, Research Project of NUDT (No. ZK16-03-32), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and Aid Program for Innovative Group of National University of Defense Technology.
文摘Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficient and inexpensive oxygen electrocatalysts as replacements for precious metal-based catalysts is vitally important for large-scale practical application in the future. A bifunctional oxygen electrocatalyst based on FeCo nanoparticles/N-doped carbon core-shell spheres supported on N-doped graphene sheets was prepared via one-step pyrolysis of graphitic carbon nitride and acetylacetonates. The optimized product exhibited an oxygen electrode activity of 0.87 V and excellent durability. The remarkable performance is mainly attributed to the synergetic effect arising from the FeCo nanoparticles and N-doped carbon shell. This study introduces an inexpensive and simple way to develop highly active bifunctional oxygen electrocatalysts.
基金the financial support from the Hunan Provincial Science and Technology Plan Project(No.2020JJ4710)the Hunan Key Laboratory of Two-Dimensional Materials(No.2018TP1010)+1 种基金the postdoctoral research funding plan in Central South University(No.140050022)the support from National Natural Science Foundation of China(No.12004439)。
文摘Earth-abundant electrocatalysts for large-current-density water splitting under alkaline condition are desirable.Oxygen evolution reaction,which is a bottleneck of the overall water splitting,faces the problems of complicated reconstruction and deficiency in rational design of active sites.Herein,we report a series of transition metal chalcogenides for alkaline OER.Among them,FeCoNi(S)displayed a low overpotential of 293 m V to deliver a current density of 500 m A cm^(-2),which is in the top level of non-precious metal based OER electrocatalysts.A combination of(ex)in situ characterizations and DFT calculation shows that Ni(Fe,Co)trimetallic oxyhydroxides were the active sites for highly-efficient OER.Furthermore,for FeCoNi(S),when used as a bifunctional catalyst for water splitting,it only required a cell voltage of 1.84 V to deliver~500 m A cm^(-2) with extraordinary long-term stability over 2000 h.This work provides the comprehension of high-efficiency,robust catalysts for OER and overall water splitting at large current densities in alkaline media.
基金the financial support from the Hunan Provincial Science and Technology Plan Project(Nos.2017TP1001,2020JJ4710)National Natural Science Foundation of China(No.11764018)+2 种基金the Natural Science Foundation of Jiangxi Province(No.20202ACBL211004)Changsha Science and Technology Plan(No.kq1801079)National Natural Science Foundation of China(No.21776317).
文摘Designing non-noble metal electrocatalysts toward alkaline hydrogen evolution reaction(HER)with high performance at a large current density is urgent.Herein,a CoO/CoP heterostructure catalyst(termed POZ)was designed by a phosphating strategy.The strong electron transfer on the interface of CoO/CoP was experimentally and theoretically proven.POZ showed a low overpotential of 236 mV at 400 mA/cm^(2),which was 249 mV lower than non-phosphated sample.It also exhibited a remarkable solar-to-hydrogen conversion efficiency of 10.5%.In this work,the construction of CoO/CoP interface realized by a simple phosphating strategy could provide an important reference to boost the HER performance on those materials not merely metal oxides.
基金the financial support from the Hunan Provincial Science and Technology Plan Project(Nos.2017TP1001,2020JJ4710)the National Natural Science Foundation of China(No.21603109)+3 种基金the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)the postdoctoral research funding plan in Central SouthUniversity(No.140050022)the Fundamental Research Funds for the Central Universities(No.DUT20RC(3)021)the 1W1B station for XAFS measurements in Beijing Synchrotron Radiation Facility(BSRF)。
文摘Single atom catalysts(SACs) with isolated metal atoms dispersed on supports exhibit distinctive performances for electrocatalysis reactions.The designable realization of well-dispersed single metal atoms is still a great challenge owing to their ease of aggregation.Here,Mo single atomic sites(Mo-N_(3)C)combined with some ultrasmall Mo_(2)C/MoN clusters(Mo-SA/Mo_(2)C-MoN-Cs,mean diameter <2 nm) on nitrogen-doped porous carbon were synthesized via a simple pyrolysis of bimetallic Zn/Mo metalorganic frameworks.X-ray absorption near edge spectra(XANES) in combination with various characterizations show that most of Mo species in sample exist in the form of single sites and the exact structure is Mo-N_(3)C.Density functional theory(DFT) calculation further shows that as the number of Ncoordination in the Mo-NxC moieties increases,the positive cha rge of Mo atoms increases.The single Mo atoms in Mo-N_(3)C have the best capability of N_(2) adsorption,which may serve as main active sites for further electrochemical N2 reduction.
基金support from the Research Project of National University of Defense Technology(ZK16-03-32)National University Student Innovation Programthe support form Research Foundation of Education Bureau of Hunan Province(16K102)
文摘Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a scalable one pot solid pyrolysis process. The sample exhibits efficient bifunctional OER/ORR activiW in alkaline, mainly ascribed to the unique micro-mesoporous structure (1-3 nm), high population of graphitic-N doping (up to 49.0%), abundant defects and the encapsulated Co nanoparticles with graphitized carbon. The according rechargeahle liquid Zn-air batteries showed excellent performance (maximum power density of 154.0 mWcm-2: energy density of 773Wh kg -1 at 5 mAcm 2 and charging-discharging cycling stability over 100 cycles). As a proof-of-concept, the flexible, rechargeable all-solid-state Zn-air batteries were constructed, and displayed a maximum power density as high as 45.9 mW cm 2 among the top level of those reported previously.
文摘Nanoparticles are extensively introduced to improve the mechanical,physical,and chemical properties of alloys.In the present study,the underlying nano-refinement mechanisms of face-centered cubic Zr(Fe,Cr)_(2)secondary phase particles(SPPs)that precipitated in Zircaloy-4 alloy under high-temperature compression were investigated in detail by utilizing high-resolution transmission electron microscopy(HRTEM)and conventional TEM techniques.The frequently observed Zr(Fe,Cr)_(2)SPPs were incoherent with the matrix and exhibited brittle fracture behaviors without measurable plasticity.HRTEM observations revealed two mechanisms underlying the nano-refinement of incoherent micro-sized SPPs via localized shear fracture on{11¯2}SPP and nanoprecipitate-assisted bending fracture,respectively.The latter was,for the first time,found to occur when the movements of large SPPs were blocked by nanometer-sized SPP during alloy deformation.Accordingly,two force models were proposed to visualize their potential nano-refinement processes.The knowledge attained from this study sheds new light on the deformation behaviors of Zr(Fe,Cr)_(2)SPPs and their associated size refinement mechanisms under high-temperature compression,and is expected to greatly benefit the process optimization of zirconium alloys to achieve precipitate nano-refinement.
基金financially supported by the National Natural Science Foundation of China(No.52001023)the Special Fund for Science and Technology Project of Guangdong Province(No.SDZX2020008)the Key Research and Development Program of Shandong Province,China(No.2019JZZY020238).
文摘The comparative study of submerged arc welding(SAW)and laser hybrid welding(LHW)was carried out for a 690 MPa high strength steel with thickness of 20 mm.Microstructure and ductile–brittle transition temperature(DBTT)evolution in welded zone were elucidated from the aspect of crystallographic structure,particularly,digitization and visualization of 24 variants.The impact toughness of each micro zone in LHW joint is better than that of SAW,in which the DBTT of equivalent fusion line and heat-affected zone(HAZ)can reach−70 and−80℃,while that of SAW is only−50℃.LHW technology induces narrowing of the HAZ and refining of the microstructure obtained in weld metal and HAZ.Meanwhile,the austenite grain size and transformation driving force in the coarse grained heat-affected zone(CGHAZ)are reduced and increased,respectively.It makes variant selection mechanism occurring in CGHAZ of LHW dominate by close-packed plane grouping,which promotes lath bainite formation with high density of high angle grain boundary,especially block boundary dominated by V1/V2 pair.While for SAW,the lower transformation driving force inferred from the large amount of retained austenite in CGHAZ induces Bain grouping of variants,and thus triggers the brittle crack propagating straightly in granular bainite,resulting in lower impact toughness and higher DBTT.
基金The authors appreciate Dr.Jinmin Liu and Dr.Xiaolan Wang for TEM measurements.
文摘Mechanism of FCC→HCP reverse phase transformation in face-centered cubic zirconium(FCC-Zr)along with a concomitant 70.5°rotation ofα-Zr matrix were investigated in zircaloy-4(Zr-4)cladding tube by using transmission electron microscopy(TEM).Results showed that the interaction among a secondary phase particle(SPP)and three FCC-Zr grains resulted in the formation of cross stacking faults in SPP and exerted a drag force on minor axis of the adjacent FCC-Zr phase.Moreover,when the shear stress along[112]_(FCC-Zr)direction was large enough to initiate the emission of 1/6[112]Shockley partial dislocation on every other(111)_(FCC-Zr)close-packed plane,the stacking sequence would change from ABC ABCA to AB ABABA viz.(0001)planes of the daughter HCP phase.Thus,FCC→HCP reverse phase transformation in FCC-Zr was presented.