Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitig...Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitigate CI.Ethylene is known to promote senescence and CI,while 1-methylcyclopropene(1-MCP)is an antagonist that inhibits the effects of ethylene.However,how1-MCP and ethylene affect proline,PA,and NO levels under chilling stress remains unclear.To address these questions,1-MCP(1μL·L^(−1))and ethylene(1μL·L^(−1))treatments were applied to peach fruit.Fruit were stored at 4°C for 28 d,then moved to 25°C for 3 d immediately after cold storage.Peach fruit exhibited CI symptoms after 7 d of cold storage with enhanced electrolyte leakage and malondialdehyde contents.The 1-MCP treatment significantly(P<0.05)restrained peach CI,and fruit did not exhibit CI symptoms until 14 d of cold storage.Proline and PAs in peach under chilling stress weremostly synthesized from glutamate and arginine,which were catalyzed by1-pyrroline-5-carboxylate synthetase and arginine decarboxylase,respectively.1-MCPtreated fruit exhibited higher proline and PA contents and enhanced chilling tolerance compared to the control,while ethylene-treated fruit had lower proline and PA contents and reduced chilling tolerance.Ethylene-treated fruit,which exhibited more severe CI symptoms compared to the control,had significantly(P<0.05)lower NO contents and NO synthase activities.However,NOmay not be a direct acting factor in 1-MCPinduced chilling tolerance,as 1-MCP-treated fruit had lower NO contents and NO synthase activities compared to the control.In conclusion,proline and PA clearly played direct and important roles in 1-MCP-induced peach chilling tolerance,while NO may not be actively involved.展开更多
BACKGROUND:Various molecular mechanisms of cell death following traumatic brain injury have been previously described.However,the time course of cell death remains unclear.TUNEL and Fluoro-Jade B labeling have been w...BACKGROUND:Various molecular mechanisms of cell death following traumatic brain injury have been previously described.However,the time course of cell death remains unclear.TUNEL and Fluoro-Jade B labeling have been widely used to label apoptotic cells and neuronal degeneration.Propidium iodide (PI) functions as a biomarker of cell death in vivo.OBJECTIVE:To explore the role of PI labeling compared to TUNEL and Fluoro-Jade B staining for detecting neural cell death,and to observe time course of traumatic brain injury-induced cell death in mice.DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment was performed at the Laboratory of Aging and Nervous Diseases,Soochow University from September 2007 to December 2008.MATERIALS:PI (B1221) was purchased from Sigma,USA.TUNEL kit was purchased from Roche Molecular Biochemicals,USA.Fluoro-Jade B was purchased from Chemicon,USA.METHODS:A total of 70 healthy,male,Kunming mice were randomly assigned to sham-surgery (n = 5) and model (n = 65) groups.Traumatic brain injury was established using the controlled cortical impact method.PI was intraperitoneally injected at 1 hour prior to animal sacrifice.MAIN OUTCOME MEASURES:TUNEL,Fluoro-Jade B,and Pl-positive cells were quantified using a double-labeling method to determine the time course of traumatic brain injury-induced cell death.RESULTS:PI labeled cells in an earlier phase of cell death than TUNEL and Fluoro-Jade B labeling.Pl-positive cells were observed immediately following injury,and the numbers rapidly increased in injured brain areas at 1 hour,peaked at 24-48 hours,and subsequently decreased at 3-21 days post-injury.TUNEL-labeled cells were significantly increased at 12 hours,while Fluoro-Jade B-labeled cells were increased at 6 hours after injury,with cells still visible at 6-48 hours post-injury.Moreover,a greater number of Pl-positive cells were observed compared to TUNEL- and Fluoro-Jade B-labeled cells.CONCLUSION:PI labeling is more sensitive and reliable than TUNEL and Fluoro-Jade B staining for detecting cell death following traumatic brain injury.Moreover,PI labeling can function as a reliable marker to estimate the entire time course of cell death.展开更多
Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a meta...Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a metal phosphorous trichalcogenide of MnPS_(3)(manganese phosphorus trisulfide),endowed with a unique and layered van der Waals structure,is highly beneficial for the fast insertion/extraction of alkali metal ions and can facilitate changes in the buffer volume during cycles with robust structural stability.The few-layered MnPS_(3)anodes displayed the desirable specific capacity and excellent rate chargeability owing to their good electronic and ionic conductivities.When assembled as a half-cell lithium-ion battery,a high reversible capacity of 380 mA h g^(−1)was maintained by the MnPS_(3)after 3000 cycles at a high current density of 4 A g^(−1),with a capacity retention of close to or above 100%.In full-cell testing,a reversible capacity of 450 mA h g^(−1)after 200 cycles was maintained as well.The results of in-situ TEM revealed that MnPS_(3)nanoflakes maintained a high structural integrity without exhibiting any pulverization after undergoing large volumetric expansion for the insertion of a large number of lithium ions.Their kinetics of lithium-ion diffusion,stable structure,and high pseudocapacitance contributed to their comprehensive performance,for example,a high specific capacity,rapid charge-discharge,and long cyclability.MnPS_(3)is thus an efficient anode for the next generation of batteries with a fast charge/discharge capability.展开更多
The goal of delivering high-quality service has spurred research of 6G satellite communication networks.The limited resource-allocation problem has been addressed by next-generation satellite communication networks,es...The goal of delivering high-quality service has spurred research of 6G satellite communication networks.The limited resource-allocation problem has been addressed by next-generation satellite communication networks,especially multilayer networks with multiple low-Earth-orbit(LEO)and nonlow-Earth-orbit(NLEO)satellites.In this study,the resource-allocation problem of a multilayer satellite network consisting of one NLEO and multiple LEO satellites is solved.The NLEO satellite is the authorized user of spectrum resources and the LEO satellites are unauthorized users.The resource allocation and dynamic pricing problems are combined,and a dynamic gamebased resource pricing and allocation model is proposed to maximize the market advantage of LEO satellites and reduce interference between LEO and NLEO satellites.In the proposed model,the resource price is formulated as the dynamic state of the LEO satellites,using the resource allocation strategy as the control variable.Based on the proposed dynamic game model,an openloop Nash equilibrium is analyzed,and an algorithm is proposed for the resource pricing and allocation problem.Numerical simulations validate the model and algorithm.展开更多
The quasicrystal phase is beneficial to increasing the strength of magnesium alloys.However,its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties.In this pap...The quasicrystal phase is beneficial to increasing the strength of magnesium alloys.However,its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties.In this paper,the Mg_(40)Zn_(55)Nd_(5) icosahedral quasicrystal(I-phase)structure is discovered in an as-cast Mg-58Zn-4Nd alloy by atomic resolution high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).A cloud-like morphology is observed with Mg_(41.6)Zn_(55.0)Nd_(3.4) composition.The selected area electronic diffrac-tion(SAED)analysis shows that the icosahedral quasicrystal structure has 5-fold,4-fold,3-fold,and 2-fold symmetry zone axes.The thermo-dynamic stability of the icosahedral quasicrystal is investigated by differential scanning calorimetry(DSC)in the annealed alloys.When an-nealed above 300℃,the Mg_(40)Zn_(55)Nd_(5) quasicrystal is found to decompose into a stable ternary phase Mg_(35)Zn_(60)Nd_(5),a binary phase MgZn,andα-Mg,suggesting that the quasicrystal is a metastable phase in the Mg-Zn-Nd system.展开更多
With the extensive application of software collaborative development technology,the processing of code data generated in programming scenes has become a research hotspot.In the collaborative programming process,differ...With the extensive application of software collaborative development technology,the processing of code data generated in programming scenes has become a research hotspot.In the collaborative programming process,different users can submit code in a distributed way.The consistency of code grammar can be achieved by syntax constraints.However,when different users work on the same code in semantic development programming practices,the development factors of different users will inevitably lead to the problem of data semantic conflict.In this paper,the characteristics of code segment data in a programming scene are considered.The code sequence can be obtained by disassembling the code segment using lexical analysis technology.Combined with a traditional solution of a data conflict problem,the code sequence can be taken as the declared value object in the data conflict resolution problem.Through the similarity analysis of code sequence objects,the concept of the deviation degree between the declared value object and the truth value object is proposed.A multi-truth discovery algorithm,called the multiple truth discovery algorithm based on deviation(MTDD),is proposed.The basic methods,such as Conflict Resolution on Heterogeneous Data,Voting-K,and MTRuths_Greedy,are compared to verify the performance and precision of the proposed MTDD algorithm.展开更多
On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is e...On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is essential for on-site programming big data.Duplicate data detection is an important step in data cleaning,which can save storage resources and enhance data consistency.Due to the insufficiency in traditional Sorted Neighborhood Method(SNM)and the difficulty of high-dimensional data detection,an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed.The efficiency of the algorithm can be elevated by improving the method of the key-selection,reducing dimension of data set and using an adaptive variable size sliding window.Experimental results show that the improved SNM algorithm exhibits better performance and achieve higher accuracy.展开更多
The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have inves...The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes.展开更多
The cellulose synthase gene superfamily,including Cellulose synthase A(CesA)and cellulose synthase-like(Csl)gene families,is responsible for the synthesis of cellulose and hemicellulose,respectively.The CesA/Csl genes...The cellulose synthase gene superfamily,including Cellulose synthase A(CesA)and cellulose synthase-like(Csl)gene families,is responsible for the synthesis of cellulose and hemicellulose,respectively.The CesA/Csl genes are vital for abiotic stress resistance and shoot tenderness regulation of tea plants(Camellia sinensis).However,the CesA/Csl gene family has not been extensively studied in tea plants.Here,we identified 53 CsCesA/Csl genes in tea plants.These genes were grouped into five subfamilies(CsCesA,CsCslB,CsCslD,CsCslE,CsCslG)based on the phylogenetic relationships with Arabidopsis and rice.The analysis of chromosome distribution,gene structure,protein domain and motif revealed that most genes in CsCesA,CsCslD and CsCslE subfamilies were conserved,whereas CsCslB and CsCslG subfamily members are highly diverged.The transcriptome analysis showed that most CsCesA/Csl genes displayed tissue-specific expression pattern.In addition,members of CsCslB4,CsCesA1/3/6,CsCslB3/4,CsCslD3,CsCslE1 and CsCslG2/3 subfamilies were up-regulated under drought and cold stresses,indicating their potential roles in regulating stress tolerance in tea plants.Furthermore,the expression levels of CsCslG2_6 and CsCslD3_5 in different tissues and cultivars,respectively,were positively correlated with the cellulose content that is negatively related with shoot tenderness.Thus,these two genes were speculated to be involved in the regulation of shoot tenderness in tea plants.Our findings may help elucidate the evolutionary relationships and expression patterns of the CsCesA/Csl genes in tea plants,and provide more candidate genes responsible for stress tolerance and tenderness regulation in tea plants for future functional research.展开更多
With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical ...With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam.展开更多
The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indis...The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.展开更多
Objective:To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie dietinduced pneumonia through proteomics analysis.Methods:Based on the Gene Expression Omnibus(GEO)database,lung tissue ...Objective:To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie dietinduced pneumonia through proteomics analysis.Methods:Based on the Gene Expression Omnibus(GEO)database,lung tissue samples from normal and high-fat diet(HFD)fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses.In the animal experiments,mice were randomly divided into the control(N),high-calorie diet pneumonia(M),and Yinlai decoction treatment(Y)groups.Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d.The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d.Pathological evaluation of the lung tissue was performed.Differentially expressed proteins(DEPs)in the lung tissue were identified using quantitative proteomics and bioinformatics analyses.The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory(MGL)Tools.DEPs were verified by western blot.Results:GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue.The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet.A total of 47 DEPs were identified between the Y and M groups.Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle(TCA)and oxidative phosphorylation.The protein-protein interaction network revealed that Atp5a1,Pdha1,and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction.Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide,praeruptorin B,chrysoeriol,and other components in Yinlai decoction to Atp5a1.Conclusion:The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation.Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.展开更多
The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realis...The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP.展开更多
Magnesium(Mg) and its alloys have emerged as a favored candidate for bio-regenerative medical implants due to their superior biocompatibility, biodegradability and the elastic modulus close to that of human bone. Unfo...Magnesium(Mg) and its alloys have emerged as a favored candidate for bio-regenerative medical implants due to their superior biocompatibility, biodegradability and the elastic modulus close to that of human bone. Unfortunately, the rapid and uncontrollable degradation rate of Mg alloys in chloride-rich body microenvironments limits their clinical orthopedic applications. Recently, Calcium Phosphate(Ca-P)biomaterials, especially Hydroxyapatite(HA), have been broadly applied in the surface functional modification of metal-based biomaterials attributed to their excellent bioactivity and biocompatibility. Hydrothermal modification of Ca-P coatings on Mg alloys has been extensively exploited by researchers for its significant superiorities in controlling coating structure and improving interfacial bonding strength for better osseointegration and corrosion resistance. This work focuses on the up-to-the-minute advances in Ca-P coatings on the surface of Mg and its alloys via hydrothermal methods, including the strategies and mechanisms of hydrothermal modification. Herein, we are inclined to share some feasible and attractive hydrothermal surface modification strategies. From the perspectives of hydrothermal manufacturing technique innovation and coating structure optimization, we evaluate how to foster the corrosion resistance, coating bonding strength, osseointegration and antibacterial properties of Mg alloys with Ca-P coatings synthesized by hydrothermal method. The challenges and future perspectives on the follow-up exploration of Mg alloys for orthopedic applications are also elaborately proposed.展开更多
Double-suction centrifugal pumps have been applied extensively in many areas,and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important.In this study,a double-...Double-suction centrifugal pumps have been applied extensively in many areas,and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important.In this study,a double-suction centrifugal pump with a high-demand for vibration and noise was redesigned by increasing the flow uniformity at the impeller discharge,implemented by combinations of more than two parameters.First,increasing the number of the impeller blades was intended to enhance the bounding effect that the blades imposed on the fluid.Subsequently,increasing the radial gap between the impeller and volute was applied to reduce the rotor-stator interaction.Finally,the staggered arrangement was optimized to weaken the efficacy of the interference superposition.Based on numerical simulation,the steady and unsteady characteristics of the pump models were calculated.From the fluctuation analysis in the frequency domain,the dimensionless pressure fluctuation amplitude at the blade passing frequency and its harmonics,located on the monitoring points in the redesigned pumps(both with larger radial gap),are reduced a lot.Further,in the volute of the model with new impellers staggered at 12°,the average value for the dimensionless pressure fluctuation amplitude decreases to 6%of that in prototype pump.The dimensionless rootmean-square pressure contour on the mid-span of the impeller tends to be more uniform in the redesigned models(both with larger radial gap);similarly,the pressure contour on the mid-section of the volute presents good uniformity in these models,which in turn demonstrating a reduction in the pressure fluctuation intensity.The results reveal the mechanism of pressure fluctuation reduction in a double-suction centrifugal pump,and the results of this study could provide a reference for pressure fluctuation reduction and vibration performance reinforcement of doublesuction centrifugal pumps and other pumps.展开更多
Wadsley-Roth (W-R) structured oxides featured with wide channels represent one of the most promising material families showing compelling rate performance for lithium-ion batteries.Herein,we report an indepth study on...Wadsley-Roth (W-R) structured oxides featured with wide channels represent one of the most promising material families showing compelling rate performance for lithium-ion batteries.Herein,we report an indepth study on the fast and extensive intercalation chemistry of phosphorus stabilized W-R phase PNb_(9)O_(25) and its application in high energy and fast-charging devices.We explore the intercalation geometry of PNb_(9)O_(25) and identify two geometrical types of stable insertion sites with the total amount much higher than conventional intercalation-type electrodes.We reveal the ion transportation kinetics that the Li ions initially diffuse along the open type Ⅲ channels and then penetrate to edge sites with low kinetic barriers.During the lithiation,no remarkable phase transition is detected with nearly intact host phosphorous niobium oxide backbone.Therefore,the oxide framework of PNb_(9)O_(25) keeps almost unchanged with all the fast diffusion channels and insertion cavities well-maintained upon cycling,which accomplishes the unconventional electrochemical performance of W-R structured electrodes.展开更多
Amyotrophic lateral sclerosis(ALS) is known as a progressive paralysis disorder characterized by degeneration of upper and lower motor neurons, and has an average survival time of three to five years. Growing evidence...Amyotrophic lateral sclerosis(ALS) is known as a progressive paralysis disorder characterized by degeneration of upper and lower motor neurons, and has an average survival time of three to five years. Growing evidence has suggested a bidirectional link between gut microbiota and neurodegeneration. Here we aimed to report one female case with ALS, who benefited from washed microbiota transplantation(WMT), an improved fecal microbiota transplantation(FMT), through a transendoscopic enteral tube during a 12-month follow-up. Notedly, the accidental scalp trauma the patient suffered later was treated with prescribed antibiotics that caused ALS deterioration. The subsequent rescue WMTs successfully stopped the progression of the disease with a quick improvement. The plateaus and reversals occurred during the whole course of WMT. The stool and blood samples from the first WMT to the last were collected for dynamic microbial and metabolomic analysis. We observed the microbial and metabolomic changing trend consistent with the disease status. This case report for the first time shows the direct clinical evidence on using WMT for treating ALS, indicating that WMT may be the novel treatment strategy for controlling this so-called incurable disease.展开更多
Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants.It plays an important physiological role in the growth of flower buds.However,the hyperoside biosynthesis pathway has not been system...Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants.It plays an important physiological role in the growth of flower buds.However,the hyperoside biosynthesis pathway has not been systematically elucidated in plants,including its original source,Hypericaceae.Our group found abundant hyperoside in the flower buds of Hypericum monogynum,and we sequenced its transcriptome to study the biosynthetic mechanism of hyperoside.After gene screening and functional verification,four kinds of key enzymes were identified.Specifically,HmF3Hs(flavanone 3-hydroxylases)and HmFLSs(flavonol synthases)could catalyze flavanones into dihydroflavonols,as well as catalyzing dihydroflavonols into flavonols.HmFLSs could also convert flavanones into flavonols and flavones with varying efficiencies.HmF3′H(flavonoid 3′-hydroxylase)was found to act broadly on 4′-hydroxyl flavonoids to produce 3′,4′-diydroxylated flavanones,dihydroflavonols,flavonols,and flavones.HmGAT(flavonoid 3-O-galactosyltransferase)would transform flavonols into the corresponding 3-O-galactosides,including hyperoside.The parallel hyperoside biosynthesis routes were thus depicted,one of which was successfully reconstructed in Escherichia coli BL21(DE3)by feeding naringenin,resulting in a hyperoside yield of 25 mg/l.Overall,this research not only helped us understand the interior catalytic mechanism of hyperoside in H.monogynum concerning flower development and bioactivity,but also provided valuable insights into these enzyme families.展开更多
基金This work was supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140483)China Postdoctoral Science Foundation(Grant No.2014M560451).
文摘Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitigate CI.Ethylene is known to promote senescence and CI,while 1-methylcyclopropene(1-MCP)is an antagonist that inhibits the effects of ethylene.However,how1-MCP and ethylene affect proline,PA,and NO levels under chilling stress remains unclear.To address these questions,1-MCP(1μL·L^(−1))and ethylene(1μL·L^(−1))treatments were applied to peach fruit.Fruit were stored at 4°C for 28 d,then moved to 25°C for 3 d immediately after cold storage.Peach fruit exhibited CI symptoms after 7 d of cold storage with enhanced electrolyte leakage and malondialdehyde contents.The 1-MCP treatment significantly(P<0.05)restrained peach CI,and fruit did not exhibit CI symptoms until 14 d of cold storage.Proline and PAs in peach under chilling stress weremostly synthesized from glutamate and arginine,which were catalyzed by1-pyrroline-5-carboxylate synthetase and arginine decarboxylase,respectively.1-MCPtreated fruit exhibited higher proline and PA contents and enhanced chilling tolerance compared to the control,while ethylene-treated fruit had lower proline and PA contents and reduced chilling tolerance.Ethylene-treated fruit,which exhibited more severe CI symptoms compared to the control,had significantly(P<0.05)lower NO contents and NO synthase activities.However,NOmay not be a direct acting factor in 1-MCPinduced chilling tolerance,as 1-MCP-treated fruit had lower NO contents and NO synthase activities compared to the control.In conclusion,proline and PA clearly played direct and important roles in 1-MCP-induced peach chilling tolerance,while NO may not be actively involved.
基金the National Natural Science Foundation of China,No. 30571909,30872666,30870808the Foundation of Shanghai Forensic Key Laboratory,No. KF0904
文摘BACKGROUND:Various molecular mechanisms of cell death following traumatic brain injury have been previously described.However,the time course of cell death remains unclear.TUNEL and Fluoro-Jade B labeling have been widely used to label apoptotic cells and neuronal degeneration.Propidium iodide (PI) functions as a biomarker of cell death in vivo.OBJECTIVE:To explore the role of PI labeling compared to TUNEL and Fluoro-Jade B staining for detecting neural cell death,and to observe time course of traumatic brain injury-induced cell death in mice.DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment was performed at the Laboratory of Aging and Nervous Diseases,Soochow University from September 2007 to December 2008.MATERIALS:PI (B1221) was purchased from Sigma,USA.TUNEL kit was purchased from Roche Molecular Biochemicals,USA.Fluoro-Jade B was purchased from Chemicon,USA.METHODS:A total of 70 healthy,male,Kunming mice were randomly assigned to sham-surgery (n = 5) and model (n = 65) groups.Traumatic brain injury was established using the controlled cortical impact method.PI was intraperitoneally injected at 1 hour prior to animal sacrifice.MAIN OUTCOME MEASURES:TUNEL,Fluoro-Jade B,and Pl-positive cells were quantified using a double-labeling method to determine the time course of traumatic brain injury-induced cell death.RESULTS:PI labeled cells in an earlier phase of cell death than TUNEL and Fluoro-Jade B labeling.Pl-positive cells were observed immediately following injury,and the numbers rapidly increased in injured brain areas at 1 hour,peaked at 24-48 hours,and subsequently decreased at 3-21 days post-injury.TUNEL-labeled cells were significantly increased at 12 hours,while Fluoro-Jade B-labeled cells were increased at 6 hours after injury,with cells still visible at 6-48 hours post-injury.Moreover,a greater number of Pl-positive cells were observed compared to TUNEL- and Fluoro-Jade B-labeled cells.CONCLUSION:PI labeling is more sensitive and reliable than TUNEL and Fluoro-Jade B staining for detecting cell death following traumatic brain injury.Moreover,PI labeling can function as a reliable marker to estimate the entire time course of cell death.
基金National Natural Science Foundation of China,Grant/Award Numbers:11902185,11972219,U21A2086National Key Research and Development Program of China,Grant/Award Number:2020YFB0704503+1 种基金Young Elite Scientist Sponsorship Program by CAST,Grant/Award Number:2019QNRC001Shanghai Sailing Program,Grant/Award Number:19YF1415100。
文摘Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a metal phosphorous trichalcogenide of MnPS_(3)(manganese phosphorus trisulfide),endowed with a unique and layered van der Waals structure,is highly beneficial for the fast insertion/extraction of alkali metal ions and can facilitate changes in the buffer volume during cycles with robust structural stability.The few-layered MnPS_(3)anodes displayed the desirable specific capacity and excellent rate chargeability owing to their good electronic and ionic conductivities.When assembled as a half-cell lithium-ion battery,a high reversible capacity of 380 mA h g^(−1)was maintained by the MnPS_(3)after 3000 cycles at a high current density of 4 A g^(−1),with a capacity retention of close to or above 100%.In full-cell testing,a reversible capacity of 450 mA h g^(−1)after 200 cycles was maintained as well.The results of in-situ TEM revealed that MnPS_(3)nanoflakes maintained a high structural integrity without exhibiting any pulverization after undergoing large volumetric expansion for the insertion of a large number of lithium ions.Their kinetics of lithium-ion diffusion,stable structure,and high pseudocapacitance contributed to their comprehensive performance,for example,a high specific capacity,rapid charge-discharge,and long cyclability.MnPS_(3)is thus an efficient anode for the next generation of batteries with a fast charge/discharge capability.
基金This work is supported by the National Natural Science Foundation of China(Grant No.61971032)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-18-008A3).
文摘The goal of delivering high-quality service has spurred research of 6G satellite communication networks.The limited resource-allocation problem has been addressed by next-generation satellite communication networks,especially multilayer networks with multiple low-Earth-orbit(LEO)and nonlow-Earth-orbit(NLEO)satellites.In this study,the resource-allocation problem of a multilayer satellite network consisting of one NLEO and multiple LEO satellites is solved.The NLEO satellite is the authorized user of spectrum resources and the LEO satellites are unauthorized users.The resource allocation and dynamic pricing problems are combined,and a dynamic gamebased resource pricing and allocation model is proposed to maximize the market advantage of LEO satellites and reduce interference between LEO and NLEO satellites.In the proposed model,the resource price is formulated as the dynamic state of the LEO satellites,using the resource allocation strategy as the control variable.Based on the proposed dynamic game model,an openloop Nash equilibrium is analyzed,and an algorithm is proposed for the resource pricing and allocation problem.Numerical simulations validate the model and algorithm.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51871143 and 11972219)the Science and Technology Committee of Shanghai(No.19010500400)+1 种基金Shanghai Rising-Star Program(No.21QA1403200)the Independent Research Project of State Key Laboratory of Mechanical Transmissions of China(No.SKLMT-ZZKT-2021M11).
文摘The quasicrystal phase is beneficial to increasing the strength of magnesium alloys.However,its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties.In this paper,the Mg_(40)Zn_(55)Nd_(5) icosahedral quasicrystal(I-phase)structure is discovered in an as-cast Mg-58Zn-4Nd alloy by atomic resolution high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).A cloud-like morphology is observed with Mg_(41.6)Zn_(55.0)Nd_(3.4) composition.The selected area electronic diffrac-tion(SAED)analysis shows that the icosahedral quasicrystal structure has 5-fold,4-fold,3-fold,and 2-fold symmetry zone axes.The thermo-dynamic stability of the icosahedral quasicrystal is investigated by differential scanning calorimetry(DSC)in the annealed alloys.When an-nealed above 300℃,the Mg_(40)Zn_(55)Nd_(5) quasicrystal is found to decompose into a stable ternary phase Mg_(35)Zn_(60)Nd_(5),a binary phase MgZn,andα-Mg,suggesting that the quasicrystal is a metastable phase in the Mg-Zn-Nd system.
基金supported by the National Key R&D Program of China(No.2018YFB1003905)the National Natural Science Foundation of China under Grant(No.61971032)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘With the extensive application of software collaborative development technology,the processing of code data generated in programming scenes has become a research hotspot.In the collaborative programming process,different users can submit code in a distributed way.The consistency of code grammar can be achieved by syntax constraints.However,when different users work on the same code in semantic development programming practices,the development factors of different users will inevitably lead to the problem of data semantic conflict.In this paper,the characteristics of code segment data in a programming scene are considered.The code sequence can be obtained by disassembling the code segment using lexical analysis technology.Combined with a traditional solution of a data conflict problem,the code sequence can be taken as the declared value object in the data conflict resolution problem.Through the similarity analysis of code sequence objects,the concept of the deviation degree between the declared value object and the truth value object is proposed.A multi-truth discovery algorithm,called the multiple truth discovery algorithm based on deviation(MTDD),is proposed.The basic methods,such as Conflict Resolution on Heterogeneous Data,Voting-K,and MTRuths_Greedy,are compared to verify the performance and precision of the proposed MTDD algorithm.
基金supported by the National Key R&D Program of China(Nos.2018YFB1003905)the National Natural Science Foundation of China under Grant No.61971032,Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is essential for on-site programming big data.Duplicate data detection is an important step in data cleaning,which can save storage resources and enhance data consistency.Due to the insufficiency in traditional Sorted Neighborhood Method(SNM)and the difficulty of high-dimensional data detection,an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed.The efficiency of the algorithm can be elevated by improving the method of the key-selection,reducing dimension of data set and using an adaptive variable size sliding window.Experimental results show that the improved SNM algorithm exhibits better performance and achieve higher accuracy.
基金the support by the National Natural Science Foundation of China(11972219 and 11902185)the support of Shanghai Sailing Program(19YF1415100)+2 种基金the Young Elite Scientist Sponsorship Program by CAST(2019QNRC001)the support of the National Natural Science Foundation of China(52090022)the Natural Science Foundation for Distinguished Young Scholars of Hebei Province(E2020203085)。
文摘The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes.
基金the Technology Creation Center of Guizhou Tea Industrialization(Qiankezhongyindi[2017]4005)Training Project for Guizhou Excellent Young Scientific and Technological Talents(Qiankehe Platform Talent[2019]5651)Guizhou Science and Technology Planning Project(Qiankehe Support[2021]General 111)to Litang Lu,and Research Funds for Introduced Talents of Guizhou University to Qi Zhao.
文摘The cellulose synthase gene superfamily,including Cellulose synthase A(CesA)and cellulose synthase-like(Csl)gene families,is responsible for the synthesis of cellulose and hemicellulose,respectively.The CesA/Csl genes are vital for abiotic stress resistance and shoot tenderness regulation of tea plants(Camellia sinensis).However,the CesA/Csl gene family has not been extensively studied in tea plants.Here,we identified 53 CsCesA/Csl genes in tea plants.These genes were grouped into five subfamilies(CsCesA,CsCslB,CsCslD,CsCslE,CsCslG)based on the phylogenetic relationships with Arabidopsis and rice.The analysis of chromosome distribution,gene structure,protein domain and motif revealed that most genes in CsCesA,CsCslD and CsCslE subfamilies were conserved,whereas CsCslB and CsCslG subfamily members are highly diverged.The transcriptome analysis showed that most CsCesA/Csl genes displayed tissue-specific expression pattern.In addition,members of CsCslB4,CsCesA1/3/6,CsCslB3/4,CsCslD3,CsCslE1 and CsCslG2/3 subfamilies were up-regulated under drought and cold stresses,indicating their potential roles in regulating stress tolerance in tea plants.Furthermore,the expression levels of CsCslG2_6 and CsCslD3_5 in different tissues and cultivars,respectively,were positively correlated with the cellulose content that is negatively related with shoot tenderness.Thus,these two genes were speculated to be involved in the regulation of shoot tenderness in tea plants.Our findings may help elucidate the evolutionary relationships and expression patterns of the CsCesA/Csl genes in tea plants,and provide more candidate genes responsible for stress tolerance and tenderness regulation in tea plants for future functional research.
基金The Natural Science Foundation of Shandong Province of China under contract Nos ZR2022MA051 and ZR2020MA090the National Natural Science Foundation of China under contract No.U22A2012+2 种基金China Postdoctoral Science Foundation under contract No.2020M670891the SDUST Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in universities of Shandong Province(innovation team of satellite positioning and navigation)。
文摘With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam.
基金the Natural Science Foundation of Shandong Province of China(No.ZR2022MA051)the China Postdoctoral Science Foundation(No.2020M670891)the SDUST Research Fund(No.2019TDJH103)。
文摘The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.
基金supported by the National Natural Science Foundation of China(81874421)the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202006).
文摘Objective:To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie dietinduced pneumonia through proteomics analysis.Methods:Based on the Gene Expression Omnibus(GEO)database,lung tissue samples from normal and high-fat diet(HFD)fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses.In the animal experiments,mice were randomly divided into the control(N),high-calorie diet pneumonia(M),and Yinlai decoction treatment(Y)groups.Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d.The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d.Pathological evaluation of the lung tissue was performed.Differentially expressed proteins(DEPs)in the lung tissue were identified using quantitative proteomics and bioinformatics analyses.The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory(MGL)Tools.DEPs were verified by western blot.Results:GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue.The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet.A total of 47 DEPs were identified between the Y and M groups.Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle(TCA)and oxidative phosphorylation.The protein-protein interaction network revealed that Atp5a1,Pdha1,and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction.Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide,praeruptorin B,chrysoeriol,and other components in Yinlai decoction to Atp5a1.Conclusion:The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation.Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.
基金The National Natural Science Foundation of China under contract No.11704225the Shandong Provincial Natural Science Foundation under contract No.ZR2016AQ23+3 种基金the State Key Laboratory of Acoustics,Chinese Academy of Sciences under contract No.SKLA201902the National Key Research and Development Program of China contract No.2018YFC1405900the SDUST Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in Universities of Shandong Province(Innovation Team of Satellite Positioning and Navigation)
文摘The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP.
基金supported by National Natural Science Foundation of China(Grant No.51872197,81772363 and 81972076)Shanghai Committee of Science and Technology,China(Grant No.15411951000)。
文摘Magnesium(Mg) and its alloys have emerged as a favored candidate for bio-regenerative medical implants due to their superior biocompatibility, biodegradability and the elastic modulus close to that of human bone. Unfortunately, the rapid and uncontrollable degradation rate of Mg alloys in chloride-rich body microenvironments limits their clinical orthopedic applications. Recently, Calcium Phosphate(Ca-P)biomaterials, especially Hydroxyapatite(HA), have been broadly applied in the surface functional modification of metal-based biomaterials attributed to their excellent bioactivity and biocompatibility. Hydrothermal modification of Ca-P coatings on Mg alloys has been extensively exploited by researchers for its significant superiorities in controlling coating structure and improving interfacial bonding strength for better osseointegration and corrosion resistance. This work focuses on the up-to-the-minute advances in Ca-P coatings on the surface of Mg and its alloys via hydrothermal methods, including the strategies and mechanisms of hydrothermal modification. Herein, we are inclined to share some feasible and attractive hydrothermal surface modification strategies. From the perspectives of hydrothermal manufacturing technique innovation and coating structure optimization, we evaluate how to foster the corrosion resistance, coating bonding strength, osseointegration and antibacterial properties of Mg alloys with Ca-P coatings synthesized by hydrothermal method. The challenges and future perspectives on the follow-up exploration of Mg alloys for orthopedic applications are also elaborately proposed.
基金Supported by National Natural Science Foundation of China(Grant Nos.52076186,51839010).
文摘Double-suction centrifugal pumps have been applied extensively in many areas,and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important.In this study,a double-suction centrifugal pump with a high-demand for vibration and noise was redesigned by increasing the flow uniformity at the impeller discharge,implemented by combinations of more than two parameters.First,increasing the number of the impeller blades was intended to enhance the bounding effect that the blades imposed on the fluid.Subsequently,increasing the radial gap between the impeller and volute was applied to reduce the rotor-stator interaction.Finally,the staggered arrangement was optimized to weaken the efficacy of the interference superposition.Based on numerical simulation,the steady and unsteady characteristics of the pump models were calculated.From the fluctuation analysis in the frequency domain,the dimensionless pressure fluctuation amplitude at the blade passing frequency and its harmonics,located on the monitoring points in the redesigned pumps(both with larger radial gap),are reduced a lot.Further,in the volute of the model with new impellers staggered at 12°,the average value for the dimensionless pressure fluctuation amplitude decreases to 6%of that in prototype pump.The dimensionless rootmean-square pressure contour on the mid-span of the impeller tends to be more uniform in the redesigned models(both with larger radial gap);similarly,the pressure contour on the mid-section of the volute presents good uniformity in these models,which in turn demonstrating a reduction in the pressure fluctuation intensity.The results reveal the mechanism of pressure fluctuation reduction in a double-suction centrifugal pump,and the results of this study could provide a reference for pressure fluctuation reduction and vibration performance reinforcement of doublesuction centrifugal pumps and other pumps.
基金supported by the National Natural Science Foundation of China (51774251)the Hebei Natural Science Foundation for Distinguished Young Scholars (B2017203313)+7 种基金the Hundred Excellent Innovative Talents Support Program in Hebei Province (SLRC2017057)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (CG2014003002)the Canada Foundation for Innovationthe Government of OntarioOntario Research Fund - Research Excellencethe University of Torontosupported by the National Natural Science Foundation of China (51702207 and 11972219)the Program for Professor of Special Appointment (Young Eastern Scholar Program) at Shanghai Institutions of Higher Learning。
文摘Wadsley-Roth (W-R) structured oxides featured with wide channels represent one of the most promising material families showing compelling rate performance for lithium-ion batteries.Herein,we report an indepth study on the fast and extensive intercalation chemistry of phosphorus stabilized W-R phase PNb_(9)O_(25) and its application in high energy and fast-charging devices.We explore the intercalation geometry of PNb_(9)O_(25) and identify two geometrical types of stable insertion sites with the total amount much higher than conventional intercalation-type electrodes.We reveal the ion transportation kinetics that the Li ions initially diffuse along the open type Ⅲ channels and then penetrate to edge sites with low kinetic barriers.During the lithiation,no remarkable phase transition is detected with nearly intact host phosphorous niobium oxide backbone.Therefore,the oxide framework of PNb_(9)O_(25) keeps almost unchanged with all the fast diffusion channels and insertion cavities well-maintained upon cycling,which accomplishes the unconventional electrochemical performance of W-R structured electrodes.
基金funded by the National Natural Science Foundation of China (Grant No. 81873548)the Nanjing Medical University Fan Daiming Research Funds for Holistic Integrative Medicine。
文摘Amyotrophic lateral sclerosis(ALS) is known as a progressive paralysis disorder characterized by degeneration of upper and lower motor neurons, and has an average survival time of three to five years. Growing evidence has suggested a bidirectional link between gut microbiota and neurodegeneration. Here we aimed to report one female case with ALS, who benefited from washed microbiota transplantation(WMT), an improved fecal microbiota transplantation(FMT), through a transendoscopic enteral tube during a 12-month follow-up. Notedly, the accidental scalp trauma the patient suffered later was treated with prescribed antibiotics that caused ALS deterioration. The subsequent rescue WMTs successfully stopped the progression of the disease with a quick improvement. The plateaus and reversals occurred during the whole course of WMT. The stool and blood samples from the first WMT to the last were collected for dynamic microbial and metabolomic analysis. We observed the microbial and metabolomic changing trend consistent with the disease status. This case report for the first time shows the direct clinical evidence on using WMT for treating ALS, indicating that WMT may be the novel treatment strategy for controlling this so-called incurable disease.
基金supported by the National Natural Science Foundation of China(No.32070389)the‘Double First-Class’University project of China Pharmaceutical University(CPU2022QZ29).
文摘Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants.It plays an important physiological role in the growth of flower buds.However,the hyperoside biosynthesis pathway has not been systematically elucidated in plants,including its original source,Hypericaceae.Our group found abundant hyperoside in the flower buds of Hypericum monogynum,and we sequenced its transcriptome to study the biosynthetic mechanism of hyperoside.After gene screening and functional verification,four kinds of key enzymes were identified.Specifically,HmF3Hs(flavanone 3-hydroxylases)and HmFLSs(flavonol synthases)could catalyze flavanones into dihydroflavonols,as well as catalyzing dihydroflavonols into flavonols.HmFLSs could also convert flavanones into flavonols and flavones with varying efficiencies.HmF3′H(flavonoid 3′-hydroxylase)was found to act broadly on 4′-hydroxyl flavonoids to produce 3′,4′-diydroxylated flavanones,dihydroflavonols,flavonols,and flavones.HmGAT(flavonoid 3-O-galactosyltransferase)would transform flavonols into the corresponding 3-O-galactosides,including hyperoside.The parallel hyperoside biosynthesis routes were thus depicted,one of which was successfully reconstructed in Escherichia coli BL21(DE3)by feeding naringenin,resulting in a hyperoside yield of 25 mg/l.Overall,this research not only helped us understand the interior catalytic mechanism of hyperoside in H.monogynum concerning flower development and bioactivity,but also provided valuable insights into these enzyme families.