期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Curcumin attenuates ochratoxin A and hypoxia co‑induced liver injury in grass carp(Ctenopharyngodon idella)by dual targeting endoplasmic reticulum stress and apoptosis via reducing ROS content
1
作者 Liangqin Wu piao zhao +6 位作者 Pei Wu Weidan Jiang Yang Liu Hongmei Ren Xiaowan Jin Xiaoqiu Zhou Lin Feng 《Journal of Animal Science and Biotechnology》 2025年第1期408-423,共16页
Background Ochratoxin A(OTA)is a toxin widely found in aquafeed ingredients,and hypoxia is a common prob-lem in fish farming.In practice,aquatic animals tend to be more sensitive to hypoxia while feeds are contaminate... Background Ochratoxin A(OTA)is a toxin widely found in aquafeed ingredients,and hypoxia is a common prob-lem in fish farming.In practice,aquatic animals tend to be more sensitive to hypoxia while feeds are contaminated with OTA,but no studies exist in this area.This research investigated the multiple biotoxicities of OTA and hypoxia combined on the liver of grass carp and explored the mitigating effect of curcumin(CUR).Methods A total of 720 healthy juvenile grass carp(11.06±0.05 g)were selected and assigned randomly to 4 experi-mental groups:control group(without OTA and CUR),1.2 mg/kg OTA group,400 mg/kg CUR group,and 1.2 mg/kg OTA+400 mg/kg CUR group with three replicates each for 60 d.Subsequently,32 fish were selected,divided into nor-moxia(18 fish)and hypoxia(18 fish)groups,and subjected to hypoxia stress for 96 h.Results CUR can attenuate histopathological damage caused by coming to OTA and hypoxia by reducing vacu-olation and nuclear excursion.The alleviation of this damage was associated with the attenuation of apoptosis in the mitochondrial pathway by decreasing the expression of the pro-apoptotic proteins Caspase 3,8,9,Bax,and Apaf1 while increasing the expression of the anti-apoptotic protein Bcl-2,and attenuation of endoplasmic reticulum stress(ERS)by reducing Grp78 expression and chop levels.This may be attributed to the fact that the addi-tion of CUR increased the levels of catalase(CAT)and glutathione reductase(GSH),increased antioxidant capacity,and ensured the proper functioning of respiratory chain complexes I and II,which in turn reduced the high produc-tion of reactive oxygen species(ROS),thus alleviating apoptosis and ERS.Conclusions In conclusion,our data demonstrate the effectiveness of CUR in attenuating liver injury caused by the combination of OTA and hypoxia.This study confirms the feasibility and efficacy of adding natural products to mitigate toxic damage to aquatic animals. 展开更多
关键词 APOPTOSIS CURCUMIN Endoplasmic reticulum stress Grass carp HYPOXIA Ochratoxin A Oxidative damage
在线阅读 下载PDF
Unveiling the emerging role of curcumin to alleviate ochratoxin A-induced muscle toxicity in grass carp(Ctenopharyngodon idella):in vitro and in vivo studies
2
作者 piao zhao Lin Feng +7 位作者 Weidan Jiang Pei Wu Yang Liu Hongmei Ren Xiaowan Jin Lu Zhang Haifeng Mi Xiaoqiu Zhou 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1638-1656,共19页
Background Ochratoxin A(OTA),a globally abundant and extremely hazardous pollutant,is a significant source of contamination in aquafeeds and is responsible for severe food pollution.The developmental toxicity of OTA a... Background Ochratoxin A(OTA),a globally abundant and extremely hazardous pollutant,is a significant source of contamination in aquafeeds and is responsible for severe food pollution.The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear.This study screened the substance curcumin(Cur),which had the best effect in alleviating OTA inhibition of myoblast proliferation,from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro.Methods A total of 720 healthy juvenile grass carp,with an initial average body weight of 11.06±0.05 g,were randomly assigned into 4 groups:the control group(without OTA and Cur),1.2 mg/kg OTA group,400 mg/kg Cur group,and 1.2 mg/kg OTA+400 mg/kg Cur group.Each treatment consisted of 3 replicates(180 fish)for 60 d.Results Firstly,we cultured,purified,and identified myoblasts using the tissue block culture method.Through preliminary screening and re-screening of 96 substances,we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect.Secondly,Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins(Myo G and MYHC)in vivo and in vitro and improve the growth performance of grass carp.Then,Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins(S6K1 and TOR),which was related to the activation of the AKT/TOR signaling pathway.Finally,Cur could downregulate the expression of OTA-enhanced protein degradation-related genes(murf1,foxo3a,and ub),which was related to the inhibition of the Fox O3a signaling pathway.Conclusions In summary,our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro.This study confirms the rapidity,feasibility,and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity. 展开更多
关键词 CURCUMIN Grass carp Myotoxic Ochratoxin A Protein deposition
在线阅读 下载PDF
Adipose-derived mesenchymal stem cells(MSCs)are a superior cell source for bone tissue engineering 被引量:4
3
作者 Yannian Gou Yanran Huang +18 位作者 Wenping Luo Yanan Li piao zhao Jiamin Zhong Xiangyu Dong Meichun Guo Aohua Li Ailing Hao Guozhi zhao Yonghui Wang Yi Zhu Hui Zhang Yunhan Shi William Wagstaff Hue H.Luu Lewis L.Shi Russell R.Reid Tong-Chuan He Jiaming Fan 《Bioactive Materials》 SCIE CSCD 2024年第4期51-63,共13页
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors,osteoinductive biofactors and biocompatible scaffold materials.Mesenchymal stem cells(MSCs)represent the most pro... Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors,osteoinductive biofactors and biocompatible scaffold materials.Mesenchymal stem cells(MSCs)represent the most promising seed cells for bone tissue engineering.As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat,MSCs can be isolated from numerous tissues and exhibit varied differentiation potential.To identify an optimal progenitor cell source for bone tissue engineering,we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources,including immortalized mouse embryonic fibroblasts(iMEF),immortalized mouse bone marrow stromal stem cells(imBMSC),immortalized mouse calvarial mesenchymal progenitors(iCAL),and immortalized mouse adipose-derived mesenchymal stem cells(iMAD).We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro,whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair.Transcriptomic analysis revealed that,while each MSC line regulated a distinct set of target genes upon BMP9 stimulation,all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt,TGF-β,PI3K/AKT,MAPK,Hippo and JAK-STAT pathways.Collectively,our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering. 展开更多
关键词 Mesenchymal stem cell(MSC) Bone tissue engineering Multipotent progenitor cells Adipose-derived mesenchymal stem cells Osteogenic differentiation ADIPOGENESIS
原文传递
The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities 被引量:2
4
作者 Michael Yu Kevin Qin +16 位作者 Jiaming Fan Guozhi zhao piao zhao Wei Zeng Connie Chen Annie Wang Yonghui Wang jiamin Zhong Yi Zhu William Wagstaff Rex C.Haydon Hue H.Luu Sherwin Ho Michael J.Lee Jason Strelzow Russell R.Reid Tong-Chuan He 《Genes & Diseases》 SCIE CSCD 2024年第3期155-187,共33页
The evolutionarily conserved Wnt signaling pathway plays a central role in develop-ment and adult tissue homeostasis across species.Wnt proteins are secreted,lipid-modified signaling molecules that activate the canoni... The evolutionarily conserved Wnt signaling pathway plays a central role in develop-ment and adult tissue homeostasis across species.Wnt proteins are secreted,lipid-modified signaling molecules that activate the canonical(β-catenin dependent)and non-canonical(β-catenin independent)Wnt signaling pathways.Cellular behaviors such as proliferation,differ-entiation,maturation,and proper body-axis specification are carried out by the canonical pathway,which is the best characterized of the known Wnt signaling paths.Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues.This includes but is not limited to embryonic,hematopoietic,mesenchymal,gut,neural,and epidermal stem cells.Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties.Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders.Not surprisingly,aberrant Wnt signaling is also associated with a wide variety of diseases,including cancer.Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation,epithelial-mesenchymal transition,and metastasis.Altogether,advances in the understand-ing of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway.Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt,this review aims to summarize the cur-rent knowledge of Wnt signaling in stem cells,aberrations to the Wnt pathway associated with diseases,and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies. 展开更多
关键词 β-Catenin Cancer Canonical Wnt Disease Non-canonical Wnt Stem cells Targeted therapy Wnt signaling
原文传递
Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk 被引量:2
5
作者 Kevin Qin Michael Yu +18 位作者 Jiaming Fan Hongwei Wang piao zhao Guozhi zhaoo Wei Zeng Connie Chen Yonghui Wang Annie Wang Zander Schwartz Jeffrey Hong Lily Song William Wagstaff Rex C.Haydon Hue H.Luu Sherwin H.Ho Jason Strelzow Russell R.Reid Tong-Chuan He Lewis L.Shi 《Genes & Diseases》 SCIE CSCD 2024年第1期103-134,共32页
Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors an... Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either throughβ-catenin in the canonical pathway or through a series of other proteins in the nonca-nonical pathway.Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body,establishing the complex interplay between Wnt signaling and other signaling pathways.This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes.Dys-regulation of this system has been implicated in many diseases affecting a wide array of organ systems,including cancer and embryological defects,and can even cause embryonic lethality.The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments.However,both stimulatory and inhibitory treatments come with potential risks that need to be addressed.This review synthesized much of the current knowl-edge on the Wnt signaling pathway,beginning with the history of Wnt signaling.It thoroughly described the different variants of Wnt signaling,including canonical,noncanonical Wnt/PCP,and the noncanonical Wnt/Ca2+pathway.Further description involved each of its components and their involvement in other cellular processes.Finally,this review explained the various other pathways and processes that crosstalk with Wnt signaling. 展开更多
关键词 β-catenin Canonical Wnt Noncanonical Wnt Signal transduction Signaling crosstalk
原文传递
GAPDH suppresses adenovirus-induced oxidative stress and enables a superfast production of recombinant adenovirus
6
作者 Guozhi zhao piao zhao +21 位作者 Yonghui Wang Hui Zhang Yi Zhu Jiamin Zhong Wulin You Guowei Shen Changi Luo Ou Mei Xingye Wu Jingjing Li Yi Shu Hongwei Wang Wiliam Wagstaff Hue HLuu Yang Bi Lewis LShi Russell RReid Tong-Chuan He Li Jiang Wei Tang Jiaming Fan Ziwei Tang 《Genes & Diseases》 SCIE CSCD 2024年第6期367-380,共14页
Recombinant adenovirus(rAdV)is a commonly used vector system for gene transfer.Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive,possibly attributable to rAdv inf... Recombinant adenovirus(rAdV)is a commonly used vector system for gene transfer.Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive,possibly attributable to rAdv infection-associated oxidative stress and reactive oxygen species(ROS)production.Here,we show that exogenous GAPDH expression mitigates adenovirus-induced ROS-associated apoptosis in HEK293 cells,and expedites adenovirus production.By stably overexpressing GAPDH in HEK293(293G)and 293pTP(293GP)cells,respectively,we demonstrated that rAdV-induced RoS production and cell apoptosis were significantly suppressed in 293G and 293GP cells.Transfection of 293G cells with adenoviral plasmid pAd-G2Luc yielded much higher titers of Ad-G2Luc at day 7 than that in HEK293 cells.Similarly,Ad-G2Luc was amplified more efficiently in 293G than in HEK293 cells.We further showed that transfection of 293GP cells with pAd-G2Luc produced much higher titers of Ad-G2Luc at day 5 than that of 293pTP cells.293GP cells amplified the Ad-G2Luc much more efficiently than 293pTP cells,indicating that exogenous GAPDH can further augment pTP-enhanced adenovirus production.These results demonstrate that exogenous GAPDH can effectively suppress adenovirus-induced ROS and thus accelerate adenovirus production.Therefore,the engineered 293GP cells represent a superfast rAdV production system for adenovirus-based gene transfer and gene therapy. 展开更多
关键词 GAPDH GENETHERAPY Oxidative stress Packaging cell line Reactive oxygen species Recombinant adenovirus
原文传递
Dietary curcumin alleviates intestinal damage induced by ochratoxin A in juvenile grass carp(Ctenopharyngodon idella):Necroptosis and inflammatory responses
7
作者 piao zhao Wei Dan Jiang +5 位作者 Pei Wu Yang Liu Hong Mei Ren Xiao Wan Jin Lin Feng Xiao Qiu Zhou 《Animal Nutrition》 SCIE CAS CSCD 2024年第3期119-132,共14页
Ochratoxin A(OTA)is one of the most common pollutants in aquatic feed.As a first line of defense,intestinal barriers could be utilized against OTA in order to prevent disorders.Natural product supplementation is one o... Ochratoxin A(OTA)is one of the most common pollutants in aquatic feed.As a first line of defense,intestinal barriers could be utilized against OTA in order to prevent disorders.Natural product supplementation is one of the most popular strategies to alleviate toxicity induced by mycotoxins,but there is a lack of knowledge about how it functions in the teleost intestine.In this study,720 juvenile grass carp of about 11 g were selected and four treatment groups(control group,OTA group,curcumin[Cur]group,and OTA+Cur group)were set up to conduct a 60-day growth test.After the test,the growth performance and intestinal health related indexes of grass carp were investigated.The addition of dietary Cur could have the following main results:(1)inhibit absorption and promote efflux transporters mRNA expression,reducing the residuals of OTA,(2)decrease oxidative stress by reducing oxidative damage and enhancing the expression of antioxidant enzymes,(3)promote mitochondrial fusion proteins to inhibit the expression of mitotic proteins and mitochondrial autophagy proteins and enhance mitochondrial function,(4)reduce necroptosis-related gene expression through inhibiting the tumor necrotic factor receptor-interacting protein kinase/mixed lineage kinase domain-like pathway,(5)reduce the expression of pro-inflammatory factors by inhibiting the Toll-like receptor 4/nuclear factor-κB signaling pathway to alleviate the intestinal inflammatory response.In summary,the results suggested that Cur could alleviate OTA-induced intestinal damage by enhancing antioxidant capacity and mitochondrial function as well as reducing necroptosis and inflammation in the grass carp intestine.This study provided a theoretical basis and production implications for dietary Cur that could improve growth performance and alleviate the intestinal damage induced by OTA in fish. 展开更多
关键词 CURCUMIN Ochratoxin A Grass carp growth performance Mid-intestine mitochondria function NECROPTOSIS
原文传递
Niclosamide(NA)overcomes cisplatin resistance in human ovarian cancer 被引量:5
8
作者 Linjuan Huang Jing Zhang +13 位作者 Youling Deng Hao Wang piao zhao Guozhi zhao Wei Zeng Yonghui Wang Connie Chen William Wagstaff Rex C.Haydon Russell R.Reid Tong-Chuan He Le Shen Hue H.Luu Ling zhao 《Genes & Diseases》 SCIE CSCD 2023年第4期1687-1701,共15页
Ovarian cancer(OC)is one of the most lethal malignancies of the female reproduc-tive system.OC patients are usually diagnosed at advanced stages due to the lack of early diag-nosis.The standard treatment for OC includ... Ovarian cancer(OC)is one of the most lethal malignancies of the female reproduc-tive system.OC patients are usually diagnosed at advanced stages due to the lack of early diag-nosis.The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy,while several targeted therapies have recently been approved for maintenance treatment.The vast majority of OC patients relapse with chemoresistant tu-mors after an initial response.Thus,there is an unmet clinical need to develop new therapeu-tic agents to overcome the chemoresistance of OC.The anti-parasite agent niclosamide(NA)has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC.Here,we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant(CR)in human OC cells.To this end,we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer.We showed that NA inhibited cell proliferation,sup-pressed cell migration,and induced cell apoptosis in both CR lines at a low micromole range.Mechanistically,NA inhibited multiple cancer-related pathways including AP1,ELK/SRF,HIF1,and TCF/LEF,in SKOV3CR and OVCAR8CR cells.NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells.Collectively,our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant hu-man OC,and further clinical trials are highly warranted. 展开更多
关键词 Chemotherapy resistance CISPLATIN Drug repurposing NICLOSAMIDE Ovarian cancer
原文传递
Long noncoding RNA(lncRNA)H19:An essential developmental regulator with expanding roles in cancer,stem cell differentiation,and metabolic diseases 被引量:4
9
作者 Junyi Liao Bowen Chen +18 位作者 Zhenglin Zhu Chengcheng Du Shengqiang Gao Guozhi zhao piao zhao Yonghui Wang Annie Wang Zander Schwartz Lily Song Jeffrey Hong William Wagstaff Rex CHaydon Hue HLuu Jiaming Fan Russell RReid Tong-Chuan He Lewis Shi Ning Hu Wei Huang 《Genes & Diseases》 SCIE CSCD 2023年第4期1351-1366,共16页
Recent advances in deep sequencing technologies have revealed that,while less than 2%of the human genome is transcribed into mRNA for protein synthesis,over 80%of the genome is transcribed,leading to the production of... Recent advances in deep sequencing technologies have revealed that,while less than 2%of the human genome is transcribed into mRNA for protein synthesis,over 80%of the genome is transcribed,leading to the production of large amounts of noncoding RNAs(ncRNAs).It has been shown that ncRNAs,especially long non-coding RNAs(lncRNAs),may play crucial regulatory roles in gene expression.As one of the first isolated and reported lncRNAs,H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis,development,tumorigenesis,osteogen-esis,and metabolism.Mechanistically,H19 mediates diverse regulatory functions by serving as competing endogenous RNAs(CeRNAs),Igf2/H19 imprinted tandem gene,modular scaffold,cooperating with H19 antisense,and acting directly with other mRNAs or lncRNAs.Here,we summarized the current understanding of H19 in embryogenesis and development,cancer development and progression,mesenchymal stem cell lineage-specific differentiation,and metabolic diseases.We discussed the potential regulatory mechanisms underlying H19’s func-tions in those processes although more in-depth studies are warranted to delineate the exact molecular,cellular,epigenetic,and genomic regulatory mechanisms underlying the physiolog-ical and pathological roles of H19.Ultimately,these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions. 展开更多
关键词 CANCER Epigenetic regulation H19 LncRNA Long-noncoding RNA Metabolic diseases Stem cell differentiation
原文传递
Reversibly immortalized keratinocytes(iKera)facilitate re-epithelization and skin wound healing:Potential applications in cell-based skin tissue engineering 被引量:4
10
作者 Jiamin Zhong Hao Wang +20 位作者 Ke Yang Huifeng Wang Chongwen Duan Na Ni Liqin An Yetao Luo piao zhao Yannian Gou Shiyan Sheng Deyao Shi Connie Chen William Wagstaff b Bryce Hendren-Santiago b Rex C.Haydon b Hue H.Luu b Russell R.Reid Sherwin HHo Guillermo A.Ameer Le Shen Tong-Chuan He Jiaming Fan 《Bioactive Materials》 SCIE 2022年第3期523-540,共18页
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.A... Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing,effective management of large chronic skin wounds remains a clinical challenge.Keratinocytes are critical to re-epithelialization and wound healing.Here,we investigated whether exogenous keratinocytes,in combination with a citrate-based scaffold,enhanced skin wound healing.We first established reversibly immortalized mouse keratinocytes(iKera),and confirmed that the iKera cells expressed keratinocyte markers,and were responsive to UVB treatment,and were non-tumorigenic.In a proof-of-principle experiment,we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone,in a mouse skin wound model.Thus,these results demonstrate that iKera cells may serve as a valuable skin epithelial source when,combining with appropriate biocompatible scaffolds,to investigate cutaneous wound healing and skin regeneration. 展开更多
关键词 KERATINOCYTES Skin tissue engineering Reversible immortalization SV40 large T antigen PPCN Skin wound healing
原文传递
Melanoma:Molecular genetics,metastasis,targeted therapies,immunotherapies,and therapeutic resistance 被引量:2
11
作者 William Wagstaff Rimel N.Mwamba +12 位作者 Karina Grullon Mikhayla Armstrong piao zhao Bryce Hendren-Santiago Kevin H.Qin Alexander J.Li Daniel A.Hu Andrew Youssef Russell R.Reid Hue H.Luu Le Shen Tong-Chuan He Rex C.Haydon 《Genes & Diseases》 SCIE 2022年第6期1608-1623,共16页
Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s.For some patients,early diagnosis and surgical removal of melanomas is lifesaving,while other patients typically turn to molecu... Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s.For some patients,early diagnosis and surgical removal of melanomas is lifesaving,while other patients typically turn to molecular targeted therapies and immunotherapies as treatment options.Easy sampling of melanomas allows the scientific community to identify the most prevalent mutations that initiate melanoma such as the BRAF,NRAS,and TERT genes,some of which can be therapeutically targeted.Though initially effective,many tumors acquire resistance to the targeted therapies demonstrating the need to investigate compensatory pathways.Immunotherapies represent an alternative to molecular targeted therapies.However,inter-tumoral immune cell populations dictate initial therapeutic response and even tumors that responded to treatment develop resistance in the long term.As the protocol for combination therapies develop,so will our scientific understanding of the many pathways at play in the progression of melanoma.The future direction of the field may be to find a molecule that connects all of the pathways.Meanwhile,noncoding RNAs have been shown to play important roles in melanoma development and progression.Studying noncoding RNAs may help us to understand how resistance e both primary and acquired e develops;ultimately allow us to harness the true potential of current therapies.This review will cover the basic structure of the skin,the mutations and pathways responsible for transforming melanocytes into melanomas,the process by which melanomas metastasize,targeted therapeutics,and the potential that noncoding RNAs have as a prognostic and treatment tool. 展开更多
关键词 BRAF inhibitors Checkpoint inhibitors Drug resistance IMMUNOTHERAPY MELANOMA Melanoma metastasis Skin cancer Targeted therapy Therapeutic resistance
原文传递
SV40 large T antigen-induced immortalization reprograms mouse cardiomyocyte progenitors with mesenchymal stem cell characteristics and osteogenic potential 被引量:3
12
作者 Yichun Yu Jiamin Zhong +13 位作者 Connie Chen Yannian Gou Guozhi zhao piao zhao Yonghui Wang Wei Zeng Annie Wang William D.Wagstaff Jr Rex C.Haydon Tong-Chuan He Russell R.Reid Michael J.Lee Hue H.Luu Jiaming Fan 《Genes & Diseases》 SCIE CSCD 2023年第4期1161-1164,共4页
While progenitor cell-based cardiomyocyte regeneration holds great promise of repairing an injured heart,primary cardiomyogenic progenitors(CPs)have a limited life span in culture,hampering the use of CPs for in vitro... While progenitor cell-based cardiomyocyte regeneration holds great promise of repairing an injured heart,primary cardiomyogenic progenitors(CPs)have a limited life span in culture,hampering the use of CPs for in vitro and in vivo studies.We previously isolated primary CPs from mouse E15.5 fetal heart,and reversibly immortalized them with SV40 large T antigen(SV40 LTA),resulting in immortalized CPs(iCPs),which maintain long-term proliferation and ex-press cardiomyogenic markers and retain differentiation potential under appropriate differentiation conditions. 展开更多
关键词 PROGENITOR cardio potential
原文传递
Bone Morphogenic Protein 9(BMP9)/Growth Differentiation Factor 2(GDF2)modulates mouse adult hippocampal neurogenesis by regulating the survival of early neural progenitors 被引量:1
13
作者 Mary Rose Rogers Wei Zeng +14 位作者 Xian Zhang Ruidong Li Qiang Wei Yuhan Kong piao zhao Guozhi zhao Yonghui Wang Jiamin Zhong Yi Zhu Rex C.Haydon Hue H.Luu Russell R.Reid Daniel A.Peterson Michael J.Lee Tong-Chuan He 《Genes & Diseases》 SCIE CSCD 2023年第4期1175-1179,共5页
Adult neurogenesis occurs in two specialized regions of the mammalian brain,the subventricular zone(SVZ)and the subgranular zone(SGZ)of the dentate gyrus(DG).^(1)Adult hippocampal neural stem cells(NSCs),referred to a... Adult neurogenesis occurs in two specialized regions of the mammalian brain,the subventricular zone(SVZ)and the subgranular zone(SGZ)of the dentate gyrus(DG).^(1)Adult hippocampal neural stem cells(NSCs),referred to as Type 1 cells represented by radial glia-like cells(RGLs),generate Type 2 cells that are divided into Type 2a and Type 2 b subpopulations,the latter of which give rise to Type 3 cells(neuroblasts). 展开更多
关键词 neural PROGENITOR VENTRICULAR
原文传递
LncRNA H19 mediates BMP9-induced angiogenesis in mesenchymal stem cells by promoting the p53-Notch1 angiogenic signaling axis
14
作者 Chengcheng Du Qiang Cheng +8 位作者 piao zhao Claire Wang Zhenglin Zhu Xiangdong Wu Shengqiang Gao Bowen Chen Jing Zou Wei Huang Junyi Liao 《Genes & Diseases》 SCIE CSCD 2023年第3期1040-1054,共15页
BMP9 mediated osteogenic differentiation mechanisms of MSCs were widely explored, however, mechanisms of BMP9-induced angiogenesis still need to be clarified. We previously characterized that Notch1 promoted BMP9-indu... BMP9 mediated osteogenic differentiation mechanisms of MSCs were widely explored, however, mechanisms of BMP9-induced angiogenesis still need to be clarified. We previously characterized that Notch1 promoted BMP9-induced osteogenesis–angiogenesis coupling process in mesenchymal stem cells (MSCs). Here, we explored the underlying mechanisms of lncRNA H19 (H19) mediated regulation of BMP9-induced angiogenesis through activating Notch1 signaling. We demonstrated that basal expression level of H19 was high in MSCs, and silencing H19 attenuates BMP9-induced osteogenesis and angiogenesis of MSCs both in vitro and in vivo. Meanwhile, we identified that BMP9-induced production of CD31+ cells was indispensable for BMP9-induced bone formation, and silencing H19 dramatically blocked BMP9-induced production of CD31^(+) cells. In addition, we found that down-regulation of H19 inhibited BMP9 mediated blood vessel formation and followed subsequent bone formation in vivo. Mechanistically, we clarified that H19 promoted p53 phosphorylation by direct interacting and phosphorylating binding, and phosphorylated p53 potentiated Notch1 expression and activation of Notch1 targeting genes by binding on the promoter area of Notch1 gene. These findings suggested that H19 regulated BMP9-induced angiogenesis of MSCs by promoting the p53-Notch1 angiogenic signaling axis. 展开更多
关键词 ANGIOGENESIS BMP9 Bone tissue engineering LncRNA H19 Mesenchymal stem cells
原文传递
Engineered nucleus-free mesenchymal stem cells (MSCs) for the targeted delivery of therapeutics to disease site
15
作者 Zander Schwartz piao zhao +8 位作者 Annie Wang Guozhi zhao Wei Zeng Yonghui Wang Hue H. Luu Rex C. Haydon Tong-Chuan He Russell R. Reid Jason Strelzow 《Genes & Diseases》 SCIE CSCD 2023年第2期310-312,I0001,共4页
Specialized therapeutic delivery, or use of pharmaceuticals and other biomaterials to target specific parts of the body or diseased tissue, has long been sought as an ideal way of treating human diseases. A recent art... Specialized therapeutic delivery, or use of pharmaceuticals and other biomaterials to target specific parts of the body or diseased tissue, has long been sought as an ideal way of treating human diseases. A recent article published in Nature Biomedical Engineering revealed an innovative strategy to engineer nucleus-free human mesenchymal stem cells (MSCs) for targeted delivery of therapeutics to disease site.1 MSCs have emerged as promising vehicles of therapeutic delivery.2,3 MSCs are undifferentiated pluripotent stem cells derived from areas such as bone marrow and adipose tissue.4,5 MSCs are sought after for their chemotaxis, or ability to home towards a chemical stimulus, and capacity for modification with elements such as chemoattractant receptors and adhesion molecules.1 These properties allow for site-specific and minimally-invasive therapeutic administration and treatment. 展开更多
关键词 TARGETED delivery sought
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部