期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mitigation of N_(2)O emissions in water-saving paddy fields:Evaluating organic fertilizer substitution and microbial mechanisms 被引量:1
1
作者 Delei Kong Xianduo Zhang +5 位作者 Qidong Yu Yaguo Jin peikun jiang Shuang Wu Shuwei Liu Jianwen Zou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3159-3173,共15页
Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potentia... Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies. 展开更多
关键词 organic manure substitution inorganic fertilizer N_(2)O functional microbe rice paddy
在线阅读 下载PDF
Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline 被引量:7
2
作者 Yihui Li Deying Lin +3 位作者 Yongfu Li peikun jiang Xiaobo Fang Bing Yu 《Nano Research》 SCIE EI CSCD 2023年第1期155-165,共11页
Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate(PMS)activators for producing radicals used to degrade organic pollutants.However,the radical-dominated pathways for PMS acti... Biochar-based transition metal catalysts have been identified as excellent peroxymonosulfate(PMS)activators for producing radicals used to degrade organic pollutants.However,the radical-dominated pathways for PMS activation severely limit their practical applications in the degradation of organic pollutants from wastewater due to side reactions between radicals and the coexisting anions.Herein,bimetallic Fe/Mn-loaded hydroxyl-rich biochar(FeMn-OH-BC)is synthesized to activate PMS through nonradical-dominated pathways.The as-prepared FeMn-OH-BC exhibits excellent catalytic activity for degrading tetracycline at broad pH conditions ranging from 5 to 9,and about 85.0%of tetracycline is removed in 40 min.Experiments on studying the influences of various anions(HCO_(3)^(−),NO_(3)^(−),and H_(2)PO_(4)^(−))show that the inhibiting effect is negligible,suggesting that the FeMn-OHBC based PMS activation is dominated by nonradical pathways.Electron paramagnetic resonance measurements and quenching tests provide direct evidence to confirm that 1O2 is the major reactive oxygen species generated from FeMn-OH-BC based PMS activation.Theoretical calculations further reveal that the FeMn-OH sites in FeMn-OH-BC are dominant active sites for PMS activation,which have higher adsorption energy and stronger oxidative activity towards PMS than OH-BC sites.This work provides a new route for driving PMS activation by biochar-based transition metal catalysts through nonradical pathways. 展开更多
关键词 BIOCHAR peroxymonosulfate activation tetracycline degradation advanced oxidation nonradical pathways
原文传递
Co-incorporation of hydrotalcite and starch into biochar-based fertilizers for the synthesis of slow-release fertilizers with improved water retention 被引量:1
3
作者 Jiawei Lu Yongfu Li +2 位作者 Yanjiang Cai peikun jiang Bing Yu 《Biochar》 SCIE CAS CSCD 2023年第1期765-777,共13页
The unsatisfactory nutrient slow-release and water-retention performance of traditional biochar-based compound fertilizers(BCF)severely limit their practical application.Herein,a new type of slow-release fertilizer wi... The unsatisfactory nutrient slow-release and water-retention performance of traditional biochar-based compound fertilizers(BCF)severely limit their practical application.Herein,a new type of slow-release fertilizer with high water retention was fabricated via the incorporation of hydrotalcite and starch into BCF,named as HS-BCF.The waterretention and nutrient releasing performance of the prepared HS-BCF and related nutrient slow-release mechanism were investigated.The results showed that the incorporation of hydrotalcite and starch into BCF could increase the soil water-retention ratio by 5-10%points.The accumulated N,P,and K leaching amounts of HS-BCF in soil within 30 days were 49.4%,13.3%,and 87.4%of BCF at most,respectively.Kinetic analysis indicated that the release of nutrients from HS-BCF was attributed to the coupling of the diffusion-controlled and relaxation-controlled mechanism.Moreover,hydrotalcite could bind with P in HS-BCF,contributing to the enhanced durability of P in HS-BCF.Finally,pot experiments showed that the N-P-K utilization efficiencies of HS-BCF were all higher than those of BCF due to a better synchronization between the nutrient release of HS-BCF and the uptake of tomato plants.Overall,the study may provide a promising strategy for simultaneously improving the water-retention and slow-release performance of traditional biochar-based fertilizers. 展开更多
关键词 STARCH HYDROTALCITE Slow-release fertilizer Release kinetics Water retention
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部