期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
2008~2017年北京市PM_(2.5)周期性变化特征与影响机制 被引量:12
1
作者 郭滢超 权建农 +4 位作者 潘昱冰 蒲维维 冯琎 赵秀娟 袁铁 《中国环境科学》 EI CAS CSCD 北大核心 2022年第3期1013-1021,共9页
利用Morlet小波方法分析北京市2008~2017年PM_(2.5)资料,结果表明,北京市PM_(2.5)浓度存在显著的日变化、周变化、以及季节和年变化周期性特征,并且秋冬季的周期性特征显著高于春夏季.结合气象资料,包括水平风速、大气边界层高度、以及... 利用Morlet小波方法分析北京市2008~2017年PM_(2.5)资料,结果表明,北京市PM_(2.5)浓度存在显著的日变化、周变化、以及季节和年变化周期性特征,并且秋冬季的周期性特征显著高于春夏季.结合气象资料,包括水平风速、大气边界层高度、以及大气稳定度指数等,分析PM_(2.5)不同周期性变化对应的主要影响机制表明:大气边界层过程是PM_(2.5)日变化的主要影响机制,导致PM_(2.5)浓度白天低、夜间高.秋冬季PM_(2.5)日变化幅度高于春夏季;天气过程是PM_(2.5)周变化的主要机制,PM_(2.5)浓度与天气变化过程带来的风速变化和边界层高度呈强反相关关系;PM_(2.5)的季节变化与大气扩散能力的季节变化密切相关,秋冬季减弱的大气扩散能力加速了PM_(2.5)在近地面累积,春夏季则相反. 展开更多
关键词 MORLET小波分析 北京 PM_(2.5)周期性变化 气象机制
在线阅读 下载PDF
A New Method for Aerosol Retrieval Based on Lidar Observations in Beijing 被引量:1
2
作者 pan yu-bing Lü Da-Ren pan Weilin 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第3期203-209,共7页
Lidar has been used extensively in the area of atmospheric aerosol measurement.Two unknowns at the reference altitude,the lidar ratio and the backscatter coefficient,need to be resolved from the lidar equation.In the ... Lidar has been used extensively in the area of atmospheric aerosol measurement.Two unknowns at the reference altitude,the lidar ratio and the backscatter coefficient,need to be resolved from the lidar equation.In the actual application,these two values are difficult to obtain,particularly the backscatter coefficient.To better characterize the optical properties of aerosols,optical thickness,and attenuated backscatter obtained by other instruments are usually used as the input for joint inversion.However,this method is limited by location and time.In this study,the authors propose a new method for aerosol retrieval by using Mie scattering lidar data to solve this problem.The authors take the horizontal aerosol extinction coefficient as the constraint to begin the iteration until a self-consistent aerosol vertical profile was obtained.By comparing their results with Aerosol Robotic Network(AERONET) data,the authours determine that the aerosol extinction coefficient obtained by combining horizontal and vertical lidar observations is more precise than that obtained by using the traditional Fernald method.This new method has been adopted for retrieving the extinction coefficient of aerosols during the observation days. 展开更多
关键词 lidarlidar ratiobackward integrationextinction COEFFICIENT
在线阅读 下载PDF
Verifying Fossil-Fuel Carbon Dioxide Emissions Forecasted by an Artificial Neural Network with the GEOS-Chem Model 被引量:1
3
作者 WANG Yi-Nan Lü Da-Ren +1 位作者 LI Qian pan yu-bing 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期377-381,共5页
In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net-... In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net- works based on the monthly average grid emission data (1979-2008) from different geographical regions. A three-dimensional global chemical transport model, God- dard Earth Observing System (GEOS)-Chem, was applied to verify the effectiveness of the networks. The results showed that the networks captured the annual increasing trend and interannual variation of ff well. The difference between the simulations with the original and predicted ff ranged from -1 ppmv to 1 ppmv globally. Meanwhile, the authors evaluated the observed and simulated north-south gradient of the atmospheric CO2 concentrations near the surface. The two simulated gradients appeared to have a similar changing pattern to the observations, with a slightly higher background CO2 concentration, - 1 ppmv. The results indicate that the Elman neural network is a useful tool for better understanding the spatial and tem- poral distribution of the atmospheric C02 concentration and ft. 展开更多
关键词 fossil-fuel emissions Elman neural network CO2 concentration GEOS-CHEM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部