Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and phys...Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and physical processes and interaction among them may affect the model performance drastically. Thus, to overcome this problem as well as to improve the strength of MLR, we proposed a hybrid approach, i.e., an Artificial Neural Network to the MLR coins as Artificial Neural Network-Multiple Linear Regression (ANN-MLR). To investigate the performance of the proposed model, we compared Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and proposed hybrid Artificial Neural Network and Multiple Linear Regression (ANN-MLR) in the prediction of chlorophyll-a (chl-a) concentration by statistical measurement which are MSE and MAE. Achieving our objectives of study, we used 4 parameters, i.e. temperature (°C), pH, salinity (ppt), DO (ppm) at the Offshore Kuala Terengganu, Terengganu, Malaysia. The results showed that our proposed model can improve the performance of the model as compared to ANN and MLR due to small errors generated, error reduced, and increased the correlation coefficient for all parameters in both MSE and MAE, respectively. Thus, this result indicated that our proposed model is efficient, precise and almost perfect correlation as compared to ANN and MLR.展开更多
In this paper, a system dynamics approach is used instead of the traditional approaches to stimulate, forecast and analyze the economic effects of an existing policy practice in Setiu Wetland. As a part of Setiu distr...In this paper, a system dynamics approach is used instead of the traditional approaches to stimulate, forecast and analyze the economic effects of an existing policy practice in Setiu Wetland. As a part of Setiu district that uphold tradition in fishery and maritime based industry, Setiu Wetland area seems to be left behind in terms of economic and livelihood. Generally, Setiu development policy consists of five sub-system including population growth, economic, residential, transportation and sub-urban sprawl. Due to their widespread population distribution, Setiu Wetland receives low urban-related progress. Hence, a forecast of 30 years from 2016 to 2046 providing a necessary insight for potential development of the Setiu Wetland region, to simulate its environment, identify gaps, propose suitable land model towards Setiu Minapolitan area (Peri-urban area) and suggest directions for future studies particularly in economic and livelihood for local authorities to develop with.展开更多
Studies on the iteration procedure in double bootstrap method have given a great impact on confidence interval performance. However, the procedure was claimed to be complicated and demand intensive computer processor....Studies on the iteration procedure in double bootstrap method have given a great impact on confidence interval performance. However, the procedure was claimed to be complicated and demand intensive computer processor. Considering this problem, an alternative procedure was proposed in this research. Despite of using small sampling sequence, this research was aimed to increase the accuracy estimation using a second replication number which resulted in a large sampling sequence of double bootstrap. In this paper, the alternative double bootstrap method was hybrid onto an example model and its performance was based on Studentised interval. The performance was examined in simulation study and real sample data of sukuk Ijarah. The result showed that hybrid double bootstrap model gave more accurate estimation in terms of its shorter length when dealing with various parameter values and has shown to improve the single bootstrap estimation.展开更多
Heckman Sampel Selection Model (PSSM) has been adopted widely in the study of labour work. This model contains exogenous, endogenous and standard error variables. However, this model is constantly exposed to high inac...Heckman Sampel Selection Model (PSSM) has been adopted widely in the study of labour work. This model contains exogenous, endogenous and standard error variables. However, this model is constantly exposed to high inaccuracy of estimation result. Therefore, to obtain an accurate and precise estimation, the bootstrap approach is introduced. The bootstrap approach will be hybrid with PSSM model known as BPSSM to achieve estimation result that is more precise. Then, the BPSSM is applied to Malaysian Population and Family Survey 1994 (MPFS-1994) data. The results showed that BPSSM provide a smaller standard error and shorter confidence intervals.展开更多
The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model i...The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model is used with the exchange rate historical data (January 2007 until December 2007) for USD/MYR and is divided into 1-, 3- and 6-horizontal months respectively. Since the presence of extreme data will affect the accuracy of the results obtained in a prediction. Therefore, to obtain a more accurate prediction results, the bootstrap approach was implemented by hybrid with AR model coins as the Bootstrap Autoregressive model (BAR). The effectiveness of the proposed model is investigated by comparing the existing and the proposed model through the statistical performance methods which are RMSE, MAE and MAD. The comparison involves 1%, 5% and 10% for each horizontal month. The results showed that the BAR model performed better than the AR model in terms of sensitivity to extreme data, the accuracy of forecasting models, efficiency and predictability of the model prediction. In conclusion, bootstrap method can alleviate the sensitivity of the model to the extreme data, thereby improving the accuracy of forecasting model which also have high prediction efficiency and that can increase the predictability of the model.展开更多
文摘Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and physical processes and interaction among them may affect the model performance drastically. Thus, to overcome this problem as well as to improve the strength of MLR, we proposed a hybrid approach, i.e., an Artificial Neural Network to the MLR coins as Artificial Neural Network-Multiple Linear Regression (ANN-MLR). To investigate the performance of the proposed model, we compared Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and proposed hybrid Artificial Neural Network and Multiple Linear Regression (ANN-MLR) in the prediction of chlorophyll-a (chl-a) concentration by statistical measurement which are MSE and MAE. Achieving our objectives of study, we used 4 parameters, i.e. temperature (°C), pH, salinity (ppt), DO (ppm) at the Offshore Kuala Terengganu, Terengganu, Malaysia. The results showed that our proposed model can improve the performance of the model as compared to ANN and MLR due to small errors generated, error reduced, and increased the correlation coefficient for all parameters in both MSE and MAE, respectively. Thus, this result indicated that our proposed model is efficient, precise and almost perfect correlation as compared to ANN and MLR.
文摘In this paper, a system dynamics approach is used instead of the traditional approaches to stimulate, forecast and analyze the economic effects of an existing policy practice in Setiu Wetland. As a part of Setiu district that uphold tradition in fishery and maritime based industry, Setiu Wetland area seems to be left behind in terms of economic and livelihood. Generally, Setiu development policy consists of five sub-system including population growth, economic, residential, transportation and sub-urban sprawl. Due to their widespread population distribution, Setiu Wetland receives low urban-related progress. Hence, a forecast of 30 years from 2016 to 2046 providing a necessary insight for potential development of the Setiu Wetland region, to simulate its environment, identify gaps, propose suitable land model towards Setiu Minapolitan area (Peri-urban area) and suggest directions for future studies particularly in economic and livelihood for local authorities to develop with.
文摘Studies on the iteration procedure in double bootstrap method have given a great impact on confidence interval performance. However, the procedure was claimed to be complicated and demand intensive computer processor. Considering this problem, an alternative procedure was proposed in this research. Despite of using small sampling sequence, this research was aimed to increase the accuracy estimation using a second replication number which resulted in a large sampling sequence of double bootstrap. In this paper, the alternative double bootstrap method was hybrid onto an example model and its performance was based on Studentised interval. The performance was examined in simulation study and real sample data of sukuk Ijarah. The result showed that hybrid double bootstrap model gave more accurate estimation in terms of its shorter length when dealing with various parameter values and has shown to improve the single bootstrap estimation.
文摘Heckman Sampel Selection Model (PSSM) has been adopted widely in the study of labour work. This model contains exogenous, endogenous and standard error variables. However, this model is constantly exposed to high inaccuracy of estimation result. Therefore, to obtain an accurate and precise estimation, the bootstrap approach is introduced. The bootstrap approach will be hybrid with PSSM model known as BPSSM to achieve estimation result that is more precise. Then, the BPSSM is applied to Malaysian Population and Family Survey 1994 (MPFS-1994) data. The results showed that BPSSM provide a smaller standard error and shorter confidence intervals.
文摘The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model is used with the exchange rate historical data (January 2007 until December 2007) for USD/MYR and is divided into 1-, 3- and 6-horizontal months respectively. Since the presence of extreme data will affect the accuracy of the results obtained in a prediction. Therefore, to obtain a more accurate prediction results, the bootstrap approach was implemented by hybrid with AR model coins as the Bootstrap Autoregressive model (BAR). The effectiveness of the proposed model is investigated by comparing the existing and the proposed model through the statistical performance methods which are RMSE, MAE and MAD. The comparison involves 1%, 5% and 10% for each horizontal month. The results showed that the BAR model performed better than the AR model in terms of sensitivity to extreme data, the accuracy of forecasting models, efficiency and predictability of the model prediction. In conclusion, bootstrap method can alleviate the sensitivity of the model to the extreme data, thereby improving the accuracy of forecasting model which also have high prediction efficiency and that can increase the predictability of the model.