Background:We aimed to characterise the geographical distribution of Sørensen-based multi-site dissimilarity(β_(sor))and its underlying true turnover(β_(sim))and nestedness(βsne)components for Chinese Lauracea...Background:We aimed to characterise the geographical distribution of Sørensen-based multi-site dissimilarity(β_(sor))and its underlying true turnover(β_(sim))and nestedness(βsne)components for Chinese Lauraceae and to analyse their relationships to current climate and past climate change.Methods:We used ensembles of small models(ESMs)to map the current distributions of 353 Lauraceae species in China and calculated β_(sor) and its β_(sim) and β_(sne) components.We tested the relationship between β_(sor),β_(sne) and β_(sim) with current climate and past climate change related predictors using a series of simultaneous autoregressive(SAR_(err))models.Results:Spatial distribution of β_(sor)of Lauraceae is positively correlated with latitude,showing an inverse rela-tionship to the latitudinalα-diversity(species richness)gradient.High β_(sor) occurs at the boundaries of the warm temperate and subtropical zones and at the Qinghai-Tibet Plateau due to high β_(sne).The optimized SAR_(err) model explainsβ_(sor) andβ_(sne) well,but notβ_(sim).Current mean annual temperature determinesβ_(sor) and β_(sne) of Lauraceae more than anomalies and velocities of temperature or precipitation since the Last Glacial Maximum.Conclusions:Current low temperatures and high climatic heterogeneity are the main factors explaining the high multi-siteβ-diversity of Lauraceae.In contrast to analyses of the β-diversity of entire species assemblages,studies of single plant families can provide complementary insights into the drivers of β-diversity of evolutionarily more narrowly defined entities.展开更多
The Convention on Biological Diversity seeks to conserve at least 30%of global land and water areas by 2030,which is a challenge but also an opportunity to better preserve biodiversity,including flowering plants(angio...The Convention on Biological Diversity seeks to conserve at least 30%of global land and water areas by 2030,which is a challenge but also an opportunity to better preserve biodiversity,including flowering plants(angiosperms).Herein,we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species.Using this database,we constructed biodiversity-environment models to predict global patterns of taxonomic,phylogenetic,and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets.We further evaluated the current protection status of the biodiversity centers of these diversity facets.Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities.Idiosyncratic centers of functional diversity,particularly of herbaceous species,were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets.Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms(woody vs.herbaceous),thus providing directions for guiding the future conservation of global plant diversity.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0502101)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.SQ2019QZKK1603)a Visiting Scholarship funded by the China Scholarship Council(Grant No.202004910612).
文摘Background:We aimed to characterise the geographical distribution of Sørensen-based multi-site dissimilarity(β_(sor))and its underlying true turnover(β_(sim))and nestedness(βsne)components for Chinese Lauraceae and to analyse their relationships to current climate and past climate change.Methods:We used ensembles of small models(ESMs)to map the current distributions of 353 Lauraceae species in China and calculated β_(sor) and its β_(sim) and β_(sne) components.We tested the relationship between β_(sor),β_(sne) and β_(sim) with current climate and past climate change related predictors using a series of simultaneous autoregressive(SAR_(err))models.Results:Spatial distribution of β_(sor)of Lauraceae is positively correlated with latitude,showing an inverse rela-tionship to the latitudinalα-diversity(species richness)gradient.High β_(sor) occurs at the boundaries of the warm temperate and subtropical zones and at the Qinghai-Tibet Plateau due to high β_(sne).The optimized SAR_(err) model explainsβ_(sor) andβ_(sne) well,but notβ_(sim).Current mean annual temperature determinesβ_(sor) and β_(sne) of Lauraceae more than anomalies and velocities of temperature or precipitation since the Last Glacial Maximum.Conclusions:Current low temperatures and high climatic heterogeneity are the main factors explaining the high multi-siteβ-diversity of Lauraceae.In contrast to analyses of the β-diversity of entire species assemblages,studies of single plant families can provide complementary insights into the drivers of β-diversity of evolutionarily more narrowly defined entities.
基金supported by the National Natural Science Foundation of China(32125026,31988102)the National Key Research Development Program of China(2022YFF0802300)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31000000)。
文摘The Convention on Biological Diversity seeks to conserve at least 30%of global land and water areas by 2030,which is a challenge but also an opportunity to better preserve biodiversity,including flowering plants(angiosperms).Herein,we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species.Using this database,we constructed biodiversity-environment models to predict global patterns of taxonomic,phylogenetic,and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets.We further evaluated the current protection status of the biodiversity centers of these diversity facets.Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities.Idiosyncratic centers of functional diversity,particularly of herbaceous species,were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets.Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms(woody vs.herbaceous),thus providing directions for guiding the future conservation of global plant diversity.