The Ba Lang sand beaches, located north of the Nha Trang Bay in Central Vietnam, are famous tourist attractions. However, they are experiencing shoreline and coastal erosion retreat, which is attributed to natural cau...The Ba Lang sand beaches, located north of the Nha Trang Bay in Central Vietnam, are famous tourist attractions. However, they are experiencing shoreline and coastal erosion retreat, which is attributed to natural causes (such as tropical depressions, storms, and monsoons) as well as human impacts (such as hydropower generation, sand dredging, and coastal works). According to the forecast of the Vietnam Ministry of Natural Resources and Environment, global climate change will cause the sea level to rise by 74 cm along the coast from the Dai Lanh Cape to the Ke Ga Cape (including the Ba Lang beaches) by the end of this century in the representative concentration pathway (RCP) 8.5 scenario. Sea level rise (SLR) due to global climate change is expected to aggravate the coastal erosion and shoreline retreat problems. In this study, coupled numerical models with the spectral wave module (MIKE 21 SW), hydrodynamic module (MIKE 21 HD), and sand transport module (MIKE 21 ST) in the MIKE 21 package were used to simulate waves, current fields, and sediment dynamics along the Ba Lang beaches considering the impact of SLR. These models were calibrated with the field data measured in December 2016. The results showed that SLR caused the wave height to increase and reduced the current speed and total sediment load in monsoon conditions. The increase in wave height was even intensified under the joint impact of SLR and extreme events.展开更多
Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused ...Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused floods and losses. This situation is considered of a general representative for coastal area in the northern part of Vietnam. A variety of studies have shown that the gradient in the longshore sediment transport rate and the offshore fine sediment lost are the main mechanisms causing the beach erosion. This study presents a field investigation of the beach profiles at Giao Thuy and Hai Hau beaches. Three types of empirical functions for the equilibrium beach profile are applied and compared with the observations. Results show that all observed beach profiles can be described by a single function. However, one specific equilibrium profile equation is not sufficient to assess all beach profiles. In Section 1 of Giao Thuy and Section 3 of Hai Thinh beaches, beach profiles are consistent with the logarithmic function, while the exponential function fits well in Section 2. This difference is explained with respect to coastal morphology, sediment characteristics and hydrodynamic conditions which vary in site. An analysis of the validity of the beach profile functions is recommended for the numerical modeling and engineering designs in this area.展开更多
The performance of a-posteriori error methodology based on moving least squares(MLS)interpolation is explored in this paper by varying the finite element error recovery parameters,namely recovery points and field vari...The performance of a-posteriori error methodology based on moving least squares(MLS)interpolation is explored in this paper by varying the finite element error recovery parameters,namely recovery points and field variable derivatives recovery.The MLS interpolation based recovery technique uses the weighted least squares method on top of the finite element method’s field variable derivatives solution to build a continuous field variable derivatives approximation.The boundary of the node support(mesh free patch of influenced nodes within a determined distance)is taken as circular,i.e.,circular support domain constructed using radial weights is considered.The field variable derivatives(stress and strains)are recovered at two kinds of points in the support domain,i.e.,Gauss points(super-convergent stress locations)and nodal points.The errors are computed as the difference between the stress from the finite element results and projected stress from the post-processed energy norm at both elemental and global levels.The benchmark numerical tests using quadrilateral and triangular meshes measure the finite element errors in strain and stress fields.The numerical examples showed the support domain-based recovery technique’s capabilities for effective and efficient error estimation in the finite element analysis of elastic problems.The MLS interpolation based recovery technique performs better for stress extraction at Gauss points with the quadrilateral discretization of the problem domain.It is also shown that the behavior of the MLS interpolation based a-posteriori error technique in stress extraction is comparable to classical Zienkiewicz-Zhu(ZZ)a-posteriori error technique.展开更多
In this paper, the problem on local scour around a single square pier was studied by using both the numerical and physical models. The numerical model for the study is FSUM based on a finite-difference method to solve...In this paper, the problem on local scour around a single square pier was studied by using both the numerical and physical models. The numerical model for the study is FSUM based on a finite-difference method to solve the Reynolds averaged Navier-Stokes equations (RANS) and the equations for suspended sediment concentration and bed morphology. The computed result was verified through data measured in the experimental flume with a sand bed. In general, the typical features of local scour around the pier were successfully simulated by FSUM, such as stream flow, bow flow, down flow, horseshoe vortex. The comparison between the computation and experiment data shows a quite good fitness. Both numerical model and experiment results show that the maximum scour depth occurs at two front edges of the pier. Although the computed result shows a little bigger scour depth in comparison with the measurement in the physical model, it still confirms the reliability of numerical model in some measure.展开更多
On the basis of the wave action balance equation which incorporates refraction,diffraction,reflection and wave-current interaction,a directional spectral wave transformation model WABED is developed for predicting the...On the basis of the wave action balance equation which incorporates refraction,diffraction,reflection and wave-current interaction,a directional spectral wave transformation model WABED is developed for predicting the irregular wave refraction-diffraction with strongly reflecting structures in coastal regions.In the model,diffraction is taken into account by introducing a term formulated from a parabolic approximation wave equation,and reflection is calculated through a back-marching numerical approach at the reflecting boundary.Two experimental data sets are used to examine the performance of present model with regard to wave characteristics around reflecting coastal structures.One is from a physical experiment at idealized inlet with parallel jetties,while the other is from a laboratory study on a coastal project of the concave breakwater.Reasonably good agreements are found for both cases,revealing the applicability of the present model for predicting combined wave refraction-diffraction processes with strongly reflecting coastal structures.展开更多
文摘The Ba Lang sand beaches, located north of the Nha Trang Bay in Central Vietnam, are famous tourist attractions. However, they are experiencing shoreline and coastal erosion retreat, which is attributed to natural causes (such as tropical depressions, storms, and monsoons) as well as human impacts (such as hydropower generation, sand dredging, and coastal works). According to the forecast of the Vietnam Ministry of Natural Resources and Environment, global climate change will cause the sea level to rise by 74 cm along the coast from the Dai Lanh Cape to the Ke Ga Cape (including the Ba Lang beaches) by the end of this century in the representative concentration pathway (RCP) 8.5 scenario. Sea level rise (SLR) due to global climate change is expected to aggravate the coastal erosion and shoreline retreat problems. In this study, coupled numerical models with the spectral wave module (MIKE 21 SW), hydrodynamic module (MIKE 21 HD), and sand transport module (MIKE 21 ST) in the MIKE 21 package were used to simulate waves, current fields, and sediment dynamics along the Ba Lang beaches considering the impact of SLR. These models were calibrated with the field data measured in December 2016. The results showed that SLR caused the wave height to increase and reduced the current speed and total sediment load in monsoon conditions. The increase in wave height was even intensified under the joint impact of SLR and extreme events.
基金supported by Vietnam International Education Development Ministry of Education and Training(Grant No.322)the Fundamental Research Funds for the Central Universities(Grant No.2012B06514)the Special Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2009585812)
文摘Giao Thuy and Hai Hau coasts are located in Nam Dinh province, Vietnam, with a total coastline of 54.42 km in length. The sea-dike system has been seriously damaged and there have been many dike breaches which caused floods and losses. This situation is considered of a general representative for coastal area in the northern part of Vietnam. A variety of studies have shown that the gradient in the longshore sediment transport rate and the offshore fine sediment lost are the main mechanisms causing the beach erosion. This study presents a field investigation of the beach profiles at Giao Thuy and Hai Hau beaches. Three types of empirical functions for the equilibrium beach profile are applied and compared with the observations. Results show that all observed beach profiles can be described by a single function. However, one specific equilibrium profile equation is not sufficient to assess all beach profiles. In Section 1 of Giao Thuy and Section 3 of Hai Thinh beaches, beach profiles are consistent with the logarithmic function, while the exponential function fits well in Section 2. This difference is explained with respect to coastal morphology, sediment characteristics and hydrodynamic conditions which vary in site. An analysis of the validity of the beach profile functions is recommended for the numerical modeling and engineering designs in this area.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No.(R.G.P2/73/41).
文摘The performance of a-posteriori error methodology based on moving least squares(MLS)interpolation is explored in this paper by varying the finite element error recovery parameters,namely recovery points and field variable derivatives recovery.The MLS interpolation based recovery technique uses the weighted least squares method on top of the finite element method’s field variable derivatives solution to build a continuous field variable derivatives approximation.The boundary of the node support(mesh free patch of influenced nodes within a determined distance)is taken as circular,i.e.,circular support domain constructed using radial weights is considered.The field variable derivatives(stress and strains)are recovered at two kinds of points in the support domain,i.e.,Gauss points(super-convergent stress locations)and nodal points.The errors are computed as the difference between the stress from the finite element results and projected stress from the post-processed energy norm at both elemental and global levels.The benchmark numerical tests using quadrilateral and triangular meshes measure the finite element errors in strain and stress fields.The numerical examples showed the support domain-based recovery technique’s capabilities for effective and efficient error estimation in the finite element analysis of elastic problems.The MLS interpolation based recovery technique performs better for stress extraction at Gauss points with the quadrilateral discretization of the problem domain.It is also shown that the behavior of the MLS interpolation based a-posteriori error technique in stress extraction is comparable to classical Zienkiewicz-Zhu(ZZ)a-posteriori error technique.
文摘In this paper, the problem on local scour around a single square pier was studied by using both the numerical and physical models. The numerical model for the study is FSUM based on a finite-difference method to solve the Reynolds averaged Navier-Stokes equations (RANS) and the equations for suspended sediment concentration and bed morphology. The computed result was verified through data measured in the experimental flume with a sand bed. In general, the typical features of local scour around the pier were successfully simulated by FSUM, such as stream flow, bow flow, down flow, horseshoe vortex. The comparison between the computation and experiment data shows a quite good fitness. Both numerical model and experiment results show that the maximum scour depth occurs at two front edges of the pier. Although the computed result shows a little bigger scour depth in comparison with the measurement in the physical model, it still confirms the reliability of numerical model in some measure.
基金The National Natural Science Foundation of China under Grant No.50979033the Program for New Century Excellent Talents in University of China under Grand No. NCET-07-0255+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20100094110016the Special Research Funding of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Grant No.2009585812
文摘On the basis of the wave action balance equation which incorporates refraction,diffraction,reflection and wave-current interaction,a directional spectral wave transformation model WABED is developed for predicting the irregular wave refraction-diffraction with strongly reflecting structures in coastal regions.In the model,diffraction is taken into account by introducing a term formulated from a parabolic approximation wave equation,and reflection is calculated through a back-marching numerical approach at the reflecting boundary.Two experimental data sets are used to examine the performance of present model with regard to wave characteristics around reflecting coastal structures.One is from a physical experiment at idealized inlet with parallel jetties,while the other is from a laboratory study on a coastal project of the concave breakwater.Reasonably good agreements are found for both cases,revealing the applicability of the present model for predicting combined wave refraction-diffraction processes with strongly reflecting coastal structures.