期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ResMHA-Net:Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework
1
作者 Novsheena Rasool Javaid Iqbal Bhat +4 位作者 najib ben aoun Abdullah Alharthi Niyaz Ahmad Wani Vikram Chopra Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2024年第10期885-909,共25页
Gliomas are aggressive brain tumors known for their heterogeneity,unclear borders,and diverse locations on Magnetic Resonance Imaging(MRI)scans.These factors present significant challenges for MRI-based segmentation,a... Gliomas are aggressive brain tumors known for their heterogeneity,unclear borders,and diverse locations on Magnetic Resonance Imaging(MRI)scans.These factors present significant challenges for MRI-based segmentation,a crucial step for effective treatment planning and monitoring of glioma progression.This study proposes a novel deep learning framework,ResNet Multi-Head Attention U-Net(ResMHA-Net),to address these challenges and enhance glioma segmentation accuracy.ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms.This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture long-range dependencies.By doing so,ResMHANet effectively segments intricate glioma sub-regions and reduces the impact of uncertain tumor boundaries.We rigorously trained and validated ResMHA-Net on the BraTS 2018,2019,2020 and 2021 datasets.Notably,ResMHA-Net achieved superior segmentation accuracy on the BraTS 2021 dataset compared to the previous years,demonstrating its remarkable adaptability and robustness across diverse datasets.Furthermore,we collected the predicted masks obtained from three datasets to enhance survival prediction,effectively augmenting the dataset size.Radiomic features were then extracted from these predicted masks and,along with clinical data,were used to train a novel ensemble learning-based machine learning model for survival prediction.This model employs a voting mechanism aggregating predictions from multiple models,leading to significant improvements over existing methods.This ensemble approach capitalizes on the strengths of various models,resulting in more accurate and reliable predictions for patient survival.Importantly,we achieved an impressive accuracy of 73%for overall survival(OS)prediction. 展开更多
关键词 GLIOMA MRI SEGMENTATION multihead attention survival prediction deep learning
在线阅读 下载PDF
CapsNet-FR: Capsule Networks for Improved Recognition of Facial Features
2
作者 Mahmood Ul Haq Muhammad Athar Javed Sethi +3 位作者 najib ben aoun Ala Saleh Alluhaidan Sadique Ahmad Zahid farid 《Computers, Materials & Continua》 SCIE EI 2024年第5期2169-2186,共18页
Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional ... Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional neuralnetworks (CNNs), have shown promising results in the field of FR. However CNNs are easily fooled since theydo not encode position and orientation correlations between features. Hinton et al. envisioned Capsule Networksas a more robust design capable of retaining pose information and spatial correlations to recognize objects morelike the brain does. Lower-level capsules hold 8-dimensional vectors of attributes like position, hue, texture, andso on, which are routed to higher-level capsules via a new routing by agreement algorithm. This provides capsulenetworks with viewpoint invariance, which has previously evaded CNNs. This research presents a FR model basedon capsule networks that was tested using the LFW dataset, COMSATS face dataset, and own acquired photos usingcameras measuring 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels. The trained model outperforms state-ofthe-art algorithms, achieving 95.82% test accuracy and performing well on unseen faces that have been blurred orrotated. Additionally, the suggested model outperformed the recently released approaches on the COMSATS facedataset, achieving a high accuracy of 92.47%. Based on the results of this research as well as previous results, capsulenetworks perform better than deeper CNNs on unobserved altered data because of their special equivarianceproperties. 展开更多
关键词 CapsNet face recognition artificial intelligence
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部