A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alic...A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.展开更多
We present a scheme for quantum secure direct communication,in which the message is encoded bylocal unitary operations,transmitted through entangled photons,and deduced from both the sender and receiver's localmea...We present a scheme for quantum secure direct communication,in which the message is encoded bylocal unitary operations,transmitted through entangled photons,and deduced from both the sender and receiver's localmeasurement results.In such a scheme,only one pair of entangled photons is consumed,and there is no need to transmitthe sender's qubit carrying the secret message in a public channel,in order to transmit two-bit classical information.展开更多
基金*Supported by the National Natural Science Foundation of China under Grant No. 60807014, the Natural Science Foundation of Jiangxi Province of China under Grant No. 2009GZW0005, the Research Foundation of state key laboratory of advanced optical communication systems and networks, and the Research Foundation of the Education Department of Jiangxi Province under Grant No. G J J09153
文摘A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.
基金National Natural Science Foundation of China under Grant Nos.10647133 and 10404010the Natural Science Foundation of Jiangxi Province of China under Grant No.0512007the Research Foundation of the Education Department of Jiangxi Province under Grant Nos.[2005]79 and [2007]22
文摘We present a scheme for quantum secure direct communication,in which the message is encoded bylocal unitary operations,transmitted through entangled photons,and deduced from both the sender and receiver's localmeasurement results.In such a scheme,only one pair of entangled photons is consumed,and there is no need to transmitthe sender's qubit carrying the secret message in a public channel,in order to transmit two-bit classical information.