We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By consider- ing an initial magnetic field, using the PLUTO code, w...We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By consider- ing an initial magnetic field, using the PLUTO code, we perform a numerical magne- tohydrodynamic simulation in order to study the effect of Hall diffusion on the physi- cal structure of the disk. Current density and temperature of the disk are significantly modified by Hall diffusion, but the global structure of the disk is not substantially affected. The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.展开更多
文摘We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By consider- ing an initial magnetic field, using the PLUTO code, we perform a numerical magne- tohydrodynamic simulation in order to study the effect of Hall diffusion on the physi- cal structure of the disk. Current density and temperature of the disk are significantly modified by Hall diffusion, but the global structure of the disk is not substantially affected. The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.