期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure effect of mechanical and cracking behaviors on brittle rocks using image-based fast Fourier transform method
1
作者 mingyao li Lei Peng +1 位作者 Dejun liu Jianping Zuo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期399-413,共15页
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan... The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. 展开更多
关键词 Rock microstructure Cracking process Brittle rocks Fast Fourier transform(FFT) Digital image processing(DIP)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部