期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Dynamic Prediction Approach for Wire Icing Thickness under Extreme Weather Conditions Based on WGAN-GP-RTabNet
1
作者 mingguan zhao Xinsheng Dong +5 位作者 Yang Yang Meng Li Hongxia Wang Shuyang Ma Rui Zhu Xiaojing Zhu 《Computer Modeling in Engineering & Sciences》 2025年第2期2091-2109,共19页
Ice cover on transmission lines is a significant issue that affects the safe operation of the power system.Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disa... Ice cover on transmission lines is a significant issue that affects the safe operation of the power system.Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disasters and reduce the impact of power outages on residents.However,under extreme weather conditions,strong instantaneous wind can cause tension sensors to fail,resulting in significant errors in the calculation of icing thickness in traditional mechanics-based models.In this paper,we propose a dynamic prediction model of wire icing thickness that can adapt to extreme weather environments.The model expands scarce raw data by the Wasserstein Generative Adversarial Network with Gradient Penalty(WGAN-GP)technique,records historical environmental information by a recurrent neural network,and evaluates the ice warning levels by a classifier.At each time point,the model diagnoses whether the current sensor failure is due to icing or strong winds.If it is determined that the wire is covered with ice,the icing thickness will be calculated after the wind-induced tension is removed from the ice-wind coupling tension.Our new model was evaluated using data from the power grid in an area with extreme weather.The results show that the proposed model has significant improvements in accuracy compared with traditional models. 展开更多
关键词 Wire icing thickness instantaneous wind transmission lines WGAN-GP-RTabNet dynamic tension
在线阅读 下载PDF
Energy Blockchain in Smart Communities: Towards Affordable Clean Energy Supply for the Built Environment
2
作者 mingguan zhao Lida Liao +5 位作者 Penglong Liang Meng Li Xinsheng Dong Yang Yang Hongxia Wang Zhenhao Zhang 《Energy Engineering》 EI 2024年第8期2313-2330,共18页
The rapid growth of distributed renewable energy penetration is promoting the evolution of the energy system toward decentralization and decentralized and digitized smart grids.This study was based on energy blockchai... The rapid growth of distributed renewable energy penetration is promoting the evolution of the energy system toward decentralization and decentralized and digitized smart grids.This study was based on energy blockchain,and developed a dual-biding mechanism based on the real-time energy surplus and demand in the local smart grid,which is expected to enable reliable,affordable,and clean energy supply in smart communities.In the proposed system,economic benefits could be achieved by replacing fossil-fuel-based electricity with the high penetration of affordable solar PV electricity.The reduction of energy surplus realized by distributed energy production and P2P energy trading,within the smart grid results in less transmission loss and lower requirements for costly upgrading of existing grids.By adopting energy blockchain and smart contract technologies,energy secure trading with a low risk of privacy leakage could be accommodated.The prototype is examined through a case study,and the feasibility and efficiency of the proposed mechanism are further validated by scenario analysis. 展开更多
关键词 Solar PV smart community energy blockchain P2P energy trading smart grid affordable energy supply
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部